Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}}\times \frac{1}{8}x
To raise \frac{2x^{6}}{y^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x
Multiply \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{6}\right)^{-3}x}{\left(y^{4}\right)^{-3}\times 8}
Express \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x as a single fraction.
\frac{\left(2x^{6}\right)^{-3}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{2^{-3}\left(x^{6}\right)^{-3}x}{y^{-12}\times 8}
Expand \left(2x^{6}\right)^{-3}.
\frac{2^{-3}x^{-18}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{\frac{1}{8}x^{-18}x}{y^{-12}\times 8}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}x^{-17}}{y^{-12}\times 8}
To multiply powers of the same base, add their exponents. Add -18 and 1 to get -17.
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}}\times \frac{1}{8}x
To raise \frac{2x^{6}}{y^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x
Multiply \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{6}\right)^{-3}x}{\left(y^{4}\right)^{-3}\times 8}
Express \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x as a single fraction.
\frac{\left(2x^{6}\right)^{-3}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{2^{-3}\left(x^{6}\right)^{-3}x}{y^{-12}\times 8}
Expand \left(2x^{6}\right)^{-3}.
\frac{2^{-3}x^{-18}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{\frac{1}{8}x^{-18}x}{y^{-12}\times 8}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}x^{-17}}{y^{-12}\times 8}
To multiply powers of the same base, add their exponents. Add -18 and 1 to get -17.