Evaluate
\frac{y^{12}}{64x^{17}}
Expand
\frac{y^{12}}{64x^{17}}
Share
Copied to clipboard
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}}\times \frac{1}{8}x
To raise \frac{2x^{6}}{y^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x
Multiply \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{6}\right)^{-3}x}{\left(y^{4}\right)^{-3}\times 8}
Express \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x as a single fraction.
\frac{\left(2x^{6}\right)^{-3}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{2^{-3}\left(x^{6}\right)^{-3}x}{y^{-12}\times 8}
Expand \left(2x^{6}\right)^{-3}.
\frac{2^{-3}x^{-18}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{\frac{1}{8}x^{-18}x}{y^{-12}\times 8}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}x^{-17}}{y^{-12}\times 8}
To multiply powers of the same base, add their exponents. Add -18 and 1 to get -17.
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}}\times \frac{1}{8}x
To raise \frac{2x^{6}}{y^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x
Multiply \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{6}\right)^{-3}x}{\left(y^{4}\right)^{-3}\times 8}
Express \frac{\left(2x^{6}\right)^{-3}}{\left(y^{4}\right)^{-3}\times 8}x as a single fraction.
\frac{\left(2x^{6}\right)^{-3}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{2^{-3}\left(x^{6}\right)^{-3}x}{y^{-12}\times 8}
Expand \left(2x^{6}\right)^{-3}.
\frac{2^{-3}x^{-18}x}{y^{-12}\times 8}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{\frac{1}{8}x^{-18}x}{y^{-12}\times 8}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}x^{-17}}{y^{-12}\times 8}
To multiply powers of the same base, add their exponents. Add -18 and 1 to get -17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}