Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{2x^{2}+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{1}{x-1}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Factor x^{3}-1.
\frac{\frac{2x^{2}+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{x^{2}+x+1}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x-1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{1}{x-1} times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{\frac{2x^{2}+1-\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Since \frac{2x^{2}+1}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{x^{2}+x+1}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}+1-x^{2}-x-1}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Do the multiplications in 2x^{2}+1-\left(x^{2}+x+1\right).
\frac{\frac{x^{2}-x}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Combine like terms in 2x^{2}+1-x^{2}-x-1.
\frac{\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{\frac{x}{x^{2}+x+1}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Cancel out x-1 in both numerator and denominator.
\frac{\frac{x}{x^{2}+x+1}}{\frac{x^{2}+x+1}{x^{2}+x+1}-\frac{x^{2}-2}{x^{2}+x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{\frac{x}{x^{2}+x+1}}{\frac{x^{2}+x+1-\left(x^{2}-2\right)}{x^{2}+x+1}}
Since \frac{x^{2}+x+1}{x^{2}+x+1} and \frac{x^{2}-2}{x^{2}+x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x}{x^{2}+x+1}}{\frac{x^{2}+x+1-x^{2}+2}{x^{2}+x+1}}
Do the multiplications in x^{2}+x+1-\left(x^{2}-2\right).
\frac{\frac{x}{x^{2}+x+1}}{\frac{x+3}{x^{2}+x+1}}
Combine like terms in x^{2}+x+1-x^{2}+2.
\frac{x\left(x^{2}+x+1\right)}{\left(x^{2}+x+1\right)\left(x+3\right)}
Divide \frac{x}{x^{2}+x+1} by \frac{x+3}{x^{2}+x+1} by multiplying \frac{x}{x^{2}+x+1} by the reciprocal of \frac{x+3}{x^{2}+x+1}.
\frac{x}{x+3}
Cancel out x^{2}+x+1 in both numerator and denominator.
\frac{\frac{2x^{2}+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{1}{x-1}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Factor x^{3}-1.
\frac{\frac{2x^{2}+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{x^{2}+x+1}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x-1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{1}{x-1} times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{\frac{2x^{2}+1-\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Since \frac{2x^{2}+1}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{x^{2}+x+1}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}+1-x^{2}-x-1}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Do the multiplications in 2x^{2}+1-\left(x^{2}+x+1\right).
\frac{\frac{x^{2}-x}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Combine like terms in 2x^{2}+1-x^{2}-x-1.
\frac{\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{\frac{x}{x^{2}+x+1}}{1-\frac{x^{2}-2}{x^{2}+x+1}}
Cancel out x-1 in both numerator and denominator.
\frac{\frac{x}{x^{2}+x+1}}{\frac{x^{2}+x+1}{x^{2}+x+1}-\frac{x^{2}-2}{x^{2}+x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{\frac{x}{x^{2}+x+1}}{\frac{x^{2}+x+1-\left(x^{2}-2\right)}{x^{2}+x+1}}
Since \frac{x^{2}+x+1}{x^{2}+x+1} and \frac{x^{2}-2}{x^{2}+x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x}{x^{2}+x+1}}{\frac{x^{2}+x+1-x^{2}+2}{x^{2}+x+1}}
Do the multiplications in x^{2}+x+1-\left(x^{2}-2\right).
\frac{\frac{x}{x^{2}+x+1}}{\frac{x+3}{x^{2}+x+1}}
Combine like terms in x^{2}+x+1-x^{2}+2.
\frac{x\left(x^{2}+x+1\right)}{\left(x^{2}+x+1\right)\left(x+3\right)}
Divide \frac{x}{x^{2}+x+1} by \frac{x+3}{x^{2}+x+1} by multiplying \frac{x}{x^{2}+x+1} by the reciprocal of \frac{x+3}{x^{2}+x+1}.
\frac{x}{x+3}
Cancel out x^{2}+x+1 in both numerator and denominator.