Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-3 and 2x+3 is \left(2x-3\right)\left(2x+3\right). Multiply \frac{2x+3}{2x-3} times \frac{2x+3}{2x+3}. Multiply \frac{2x-3}{2x+3} times \frac{2x-3}{2x-3}.
\frac{\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
Since \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
Do the multiplications in \left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right).
\frac{\frac{24x}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
Combine like terms in 4x^{2}+6x+6x+9-4x^{2}+6x+6x-9.
\frac{24x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)\times 24}
Divide \frac{24x}{\left(2x-3\right)\left(2x+3\right)} by \frac{24}{4x^{2}-9} by multiplying \frac{24x}{\left(2x-3\right)\left(2x+3\right)} by the reciprocal of \frac{24}{4x^{2}-9}.
\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)}
Cancel out 24 in both numerator and denominator.
\frac{x\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
x
Cancel out \left(2x-3\right)\left(2x+3\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-3 and 2x+3 is \left(2x-3\right)\left(2x+3\right). Multiply \frac{2x+3}{2x-3} times \frac{2x+3}{2x+3}. Multiply \frac{2x-3}{2x+3} times \frac{2x-3}{2x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
Since \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
Do the multiplications in \left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{24x}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
Combine like terms in 4x^{2}+6x+6x+9-4x^{2}+6x+6x-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)\times 24})
Divide \frac{24x}{\left(2x-3\right)\left(2x+3\right)} by \frac{24}{4x^{2}-9} by multiplying \frac{24x}{\left(2x-3\right)\left(2x+3\right)} by the reciprocal of \frac{24}{4x^{2}-9}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)})
Cancel out 24 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)})
Factor the expressions that are not already factored in \frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Cancel out \left(2x-3\right)\left(2x+3\right) in both numerator and denominator.
x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
x^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.