Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-3 and 2x+3 is \left(2x-3\right)\left(2x+3\right). Multiply \frac{2x+3}{2x-3} times \frac{2x+3}{2x+3}. Multiply \frac{2x-3}{2x+3} times \frac{2x-3}{2x-3}.
\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
Since \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}
Do the multiplications in \left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right).
\frac{24x}{\left(2x-3\right)\left(2x+3\right)}
Combine like terms in 4x^{2}+6x+6x+9-4x^{2}+6x+6x-9.
\frac{24x}{4x^{2}-9}
Expand \left(2x-3\right)\left(2x+3\right).
\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-3 and 2x+3 is \left(2x-3\right)\left(2x+3\right). Multiply \frac{2x+3}{2x-3} times \frac{2x+3}{2x+3}. Multiply \frac{2x-3}{2x+3} times \frac{2x-3}{2x-3}.
\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
Since \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}
Do the multiplications in \left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right).
\frac{24x}{\left(2x-3\right)\left(2x+3\right)}
Combine like terms in 4x^{2}+6x+6x+9-4x^{2}+6x+6x-9.
\frac{24x}{4x^{2}-9}
Expand \left(2x-3\right)\left(2x+3\right).