Evaluate
\frac{24x}{4x^{2}-9}
Expand
\frac{24x}{4x^{2}-9}
Graph
Quiz
Polynomial
5 problems similar to:
( \frac { 2 x + 3 } { 2 x - 3 } - \frac { 2 x - 3 } { 2 x + 3 } )
Share
Copied to clipboard
\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-3 and 2x+3 is \left(2x-3\right)\left(2x+3\right). Multiply \frac{2x+3}{2x-3} times \frac{2x+3}{2x+3}. Multiply \frac{2x-3}{2x+3} times \frac{2x-3}{2x-3}.
\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
Since \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}
Do the multiplications in \left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right).
\frac{24x}{\left(2x-3\right)\left(2x+3\right)}
Combine like terms in 4x^{2}+6x+6x+9-4x^{2}+6x+6x-9.
\frac{24x}{4x^{2}-9}
Expand \left(2x-3\right)\left(2x+3\right).
\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-3 and 2x+3 is \left(2x-3\right)\left(2x+3\right). Multiply \frac{2x+3}{2x-3} times \frac{2x+3}{2x+3}. Multiply \frac{2x-3}{2x+3} times \frac{2x-3}{2x-3}.
\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
Since \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}
Do the multiplications in \left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right).
\frac{24x}{\left(2x-3\right)\left(2x+3\right)}
Combine like terms in 4x^{2}+6x+6x+9-4x^{2}+6x+6x-9.
\frac{24x}{4x^{2}-9}
Expand \left(2x-3\right)\left(2x+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}