Evaluate
\frac{729w^{\frac{9}{2}}}{64}
Expand
\frac{729w^{\frac{9}{2}}}{64}
Share
Copied to clipboard
\left(\frac{2}{3w^{\frac{3}{4}}}\right)^{-6}
Cancel out w in both numerator and denominator.
\frac{2^{-6}}{\left(3w^{\frac{3}{4}}\right)^{-6}}
To raise \frac{2}{3w^{\frac{3}{4}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{64}}{\left(3w^{\frac{3}{4}}\right)^{-6}}
Calculate 2 to the power of -6 and get \frac{1}{64}.
\frac{\frac{1}{64}}{3^{-6}\left(w^{\frac{3}{4}}\right)^{-6}}
Expand \left(3w^{\frac{3}{4}}\right)^{-6}.
\frac{\frac{1}{64}}{3^{-6}w^{-\frac{9}{2}}}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{4} and -6 to get -\frac{9}{2}.
\frac{\frac{1}{64}}{\frac{1}{729}w^{-\frac{9}{2}}}
Calculate 3 to the power of -6 and get \frac{1}{729}.
\frac{1}{64\times \frac{1}{729}w^{-\frac{9}{2}}}
Express \frac{\frac{1}{64}}{\frac{1}{729}w^{-\frac{9}{2}}} as a single fraction.
\frac{1}{\frac{64}{729}w^{-\frac{9}{2}}}
Multiply 64 and \frac{1}{729} to get \frac{64}{729}.
\left(\frac{2}{3w^{\frac{3}{4}}}\right)^{-6}
Cancel out w in both numerator and denominator.
\frac{2^{-6}}{\left(3w^{\frac{3}{4}}\right)^{-6}}
To raise \frac{2}{3w^{\frac{3}{4}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{64}}{\left(3w^{\frac{3}{4}}\right)^{-6}}
Calculate 2 to the power of -6 and get \frac{1}{64}.
\frac{\frac{1}{64}}{3^{-6}\left(w^{\frac{3}{4}}\right)^{-6}}
Expand \left(3w^{\frac{3}{4}}\right)^{-6}.
\frac{\frac{1}{64}}{3^{-6}w^{-\frac{9}{2}}}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{4} and -6 to get -\frac{9}{2}.
\frac{\frac{1}{64}}{\frac{1}{729}w^{-\frac{9}{2}}}
Calculate 3 to the power of -6 and get \frac{1}{729}.
\frac{1}{64\times \frac{1}{729}w^{-\frac{9}{2}}}
Express \frac{\frac{1}{64}}{\frac{1}{729}w^{-\frac{9}{2}}} as a single fraction.
\frac{1}{\frac{64}{729}w^{-\frac{9}{2}}}
Multiply 64 and \frac{1}{729} to get \frac{64}{729}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}