Evaluate
\frac{4s^{7}r^{9}}{9t^{14}}
Expand
\frac{4s^{7}r^{9}}{9t^{14}}
Share
Copied to clipboard
\frac{\left(2s^{2}r^{-3}\right)^{-1}}{\left(3t^{-2}\right)^{-1}}\times \left(\frac{2r^{2}}{3s^{-3}t^{4}}\right)^{3}
To raise \frac{2s^{2}r^{-3}}{3t^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2s^{2}r^{-3}\right)^{-1}}{\left(3t^{-2}\right)^{-1}}\times \frac{\left(2r^{2}\right)^{3}}{\left(3s^{-3}t^{4}\right)^{3}}
To raise \frac{2r^{2}}{3s^{-3}t^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2s^{2}r^{-3}\right)^{-1}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Multiply \frac{\left(2s^{2}r^{-3}\right)^{-1}}{\left(3t^{-2}\right)^{-1}} times \frac{\left(2r^{2}\right)^{3}}{\left(3s^{-3}t^{4}\right)^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{-1}\left(s^{2}\right)^{-1}\left(r^{-3}\right)^{-1}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Expand \left(2s^{2}r^{-3}\right)^{-1}.
\frac{2^{-1}s^{-2}\left(r^{-3}\right)^{-1}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{2^{-1}s^{-2}r^{3}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -1 to get 3.
\frac{\frac{1}{2}s^{-2}r^{3}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\frac{1}{2}s^{-2}r^{3}\times 2^{3}\left(r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Expand \left(2r^{2}\right)^{3}.
\frac{\frac{1}{2}s^{-2}r^{3}\times 2^{3}r^{6}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{2}s^{-2}r^{3}\times 8r^{6}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{4s^{-2}r^{3}r^{6}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Multiply \frac{1}{2} and 8 to get 4.
\frac{4s^{-2}r^{9}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\frac{4s^{-2}r^{9}}{3^{-1}\left(t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Expand \left(3t^{-2}\right)^{-1}.
\frac{4s^{-2}r^{9}}{3^{-1}t^{2}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times \left(3s^{-3}t^{4}\right)^{3}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 3^{3}\left(s^{-3}\right)^{3}\left(t^{4}\right)^{3}}
Expand \left(3s^{-3}t^{4}\right)^{3}.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 3^{3}s^{-9}\left(t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 3^{3}s^{-9}t^{12}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 27s^{-9}t^{12}}
Calculate 3 to the power of 3 and get 27.
\frac{4s^{-2}r^{9}}{9t^{2}s^{-9}t^{12}}
Multiply \frac{1}{3} and 27 to get 9.
\frac{4s^{-2}r^{9}}{9t^{14}s^{-9}}
To multiply powers of the same base, add their exponents. Add 2 and 12 to get 14.
\frac{4s^{7}r^{9}}{9t^{14}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(2s^{2}r^{-3}\right)^{-1}}{\left(3t^{-2}\right)^{-1}}\times \left(\frac{2r^{2}}{3s^{-3}t^{4}}\right)^{3}
To raise \frac{2s^{2}r^{-3}}{3t^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2s^{2}r^{-3}\right)^{-1}}{\left(3t^{-2}\right)^{-1}}\times \frac{\left(2r^{2}\right)^{3}}{\left(3s^{-3}t^{4}\right)^{3}}
To raise \frac{2r^{2}}{3s^{-3}t^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2s^{2}r^{-3}\right)^{-1}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Multiply \frac{\left(2s^{2}r^{-3}\right)^{-1}}{\left(3t^{-2}\right)^{-1}} times \frac{\left(2r^{2}\right)^{3}}{\left(3s^{-3}t^{4}\right)^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{-1}\left(s^{2}\right)^{-1}\left(r^{-3}\right)^{-1}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Expand \left(2s^{2}r^{-3}\right)^{-1}.
\frac{2^{-1}s^{-2}\left(r^{-3}\right)^{-1}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{2^{-1}s^{-2}r^{3}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -1 to get 3.
\frac{\frac{1}{2}s^{-2}r^{3}\times \left(2r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\frac{1}{2}s^{-2}r^{3}\times 2^{3}\left(r^{2}\right)^{3}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Expand \left(2r^{2}\right)^{3}.
\frac{\frac{1}{2}s^{-2}r^{3}\times 2^{3}r^{6}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{2}s^{-2}r^{3}\times 8r^{6}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{4s^{-2}r^{3}r^{6}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Multiply \frac{1}{2} and 8 to get 4.
\frac{4s^{-2}r^{9}}{\left(3t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\frac{4s^{-2}r^{9}}{3^{-1}\left(t^{-2}\right)^{-1}\times \left(3s^{-3}t^{4}\right)^{3}}
Expand \left(3t^{-2}\right)^{-1}.
\frac{4s^{-2}r^{9}}{3^{-1}t^{2}\times \left(3s^{-3}t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times \left(3s^{-3}t^{4}\right)^{3}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 3^{3}\left(s^{-3}\right)^{3}\left(t^{4}\right)^{3}}
Expand \left(3s^{-3}t^{4}\right)^{3}.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 3^{3}s^{-9}\left(t^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 3^{3}s^{-9}t^{12}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{4s^{-2}r^{9}}{\frac{1}{3}t^{2}\times 27s^{-9}t^{12}}
Calculate 3 to the power of 3 and get 27.
\frac{4s^{-2}r^{9}}{9t^{2}s^{-9}t^{12}}
Multiply \frac{1}{3} and 27 to get 9.
\frac{4s^{-2}r^{9}}{9t^{14}s^{-9}}
To multiply powers of the same base, add their exponents. Add 2 and 12 to get 14.
\frac{4s^{7}r^{9}}{9t^{14}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}