Evaluate
\frac{2kn}{\left(2n+k\right)^{2}}
Factor
\frac{2kn}{\left(2n+k\right)^{2}}
Share
Copied to clipboard
\frac{2n}{k+2n}-\frac{4n^{2}}{\left(2n+k\right)^{2}}
Factor k^{2}+4nk+4n^{2}.
\frac{2n\left(2n+k\right)}{\left(2n+k\right)^{2}}-\frac{4n^{2}}{\left(2n+k\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k+2n and \left(2n+k\right)^{2} is \left(2n+k\right)^{2}. Multiply \frac{2n}{k+2n} times \frac{2n+k}{2n+k}.
\frac{2n\left(2n+k\right)-4n^{2}}{\left(2n+k\right)^{2}}
Since \frac{2n\left(2n+k\right)}{\left(2n+k\right)^{2}} and \frac{4n^{2}}{\left(2n+k\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4n^{2}+2nk-4n^{2}}{\left(2n+k\right)^{2}}
Do the multiplications in 2n\left(2n+k\right)-4n^{2}.
\frac{2nk}{\left(2n+k\right)^{2}}
Combine like terms in 4n^{2}+2nk-4n^{2}.
\frac{2nk}{4n^{2}+4kn+k^{2}}
Expand \left(2n+k\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}