Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{1}{m-2}}{1-\frac{1}{m+2}}
Factor m^{2}-4.
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{m+2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+2\right) and m-2 is \left(m-2\right)\left(m+2\right). Multiply \frac{1}{m-2} times \frac{m+2}{m+2}.
\frac{\frac{2m-\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Since \frac{2m}{\left(m-2\right)\left(m+2\right)} and \frac{m+2}{\left(m-2\right)\left(m+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2m-m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Do the multiplications in 2m-\left(m+2\right).
\frac{\frac{m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Combine like terms in 2m-m-2.
\frac{\frac{1}{m+2}}{1-\frac{1}{m+2}}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{1}{m+2}}{\frac{m+2}{m+2}-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{\frac{1}{m+2}}{\frac{m+2-1}{m+2}}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{m+2}}{\frac{m+1}{m+2}}
Combine like terms in m+2-1.
\frac{m+2}{\left(m+2\right)\left(m+1\right)}
Divide \frac{1}{m+2} by \frac{m+1}{m+2} by multiplying \frac{1}{m+2} by the reciprocal of \frac{m+1}{m+2}.
\frac{1}{m+1}
Cancel out m+2 in both numerator and denominator.
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{1}{m-2}}{1-\frac{1}{m+2}}
Factor m^{2}-4.
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{m+2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+2\right) and m-2 is \left(m-2\right)\left(m+2\right). Multiply \frac{1}{m-2} times \frac{m+2}{m+2}.
\frac{\frac{2m-\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Since \frac{2m}{\left(m-2\right)\left(m+2\right)} and \frac{m+2}{\left(m-2\right)\left(m+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2m-m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Do the multiplications in 2m-\left(m+2\right).
\frac{\frac{m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Combine like terms in 2m-m-2.
\frac{\frac{1}{m+2}}{1-\frac{1}{m+2}}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{1}{m+2}}{\frac{m+2}{m+2}-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{\frac{1}{m+2}}{\frac{m+2-1}{m+2}}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{m+2}}{\frac{m+1}{m+2}}
Combine like terms in m+2-1.
\frac{m+2}{\left(m+2\right)\left(m+1\right)}
Divide \frac{1}{m+2} by \frac{m+1}{m+2} by multiplying \frac{1}{m+2} by the reciprocal of \frac{m+1}{m+2}.
\frac{1}{m+1}
Cancel out m+2 in both numerator and denominator.