Evaluate
\frac{1}{m+1}
Expand
\frac{1}{m+1}
Share
Copied to clipboard
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{1}{m-2}}{1-\frac{1}{m+2}}
Factor m^{2}-4.
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{m+2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+2\right) and m-2 is \left(m-2\right)\left(m+2\right). Multiply \frac{1}{m-2} times \frac{m+2}{m+2}.
\frac{\frac{2m-\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Since \frac{2m}{\left(m-2\right)\left(m+2\right)} and \frac{m+2}{\left(m-2\right)\left(m+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2m-m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Do the multiplications in 2m-\left(m+2\right).
\frac{\frac{m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Combine like terms in 2m-m-2.
\frac{\frac{1}{m+2}}{1-\frac{1}{m+2}}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{1}{m+2}}{\frac{m+2}{m+2}-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{\frac{1}{m+2}}{\frac{m+2-1}{m+2}}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{m+2}}{\frac{m+1}{m+2}}
Combine like terms in m+2-1.
\frac{m+2}{\left(m+2\right)\left(m+1\right)}
Divide \frac{1}{m+2} by \frac{m+1}{m+2} by multiplying \frac{1}{m+2} by the reciprocal of \frac{m+1}{m+2}.
\frac{1}{m+1}
Cancel out m+2 in both numerator and denominator.
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{1}{m-2}}{1-\frac{1}{m+2}}
Factor m^{2}-4.
\frac{\frac{2m}{\left(m-2\right)\left(m+2\right)}-\frac{m+2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+2\right) and m-2 is \left(m-2\right)\left(m+2\right). Multiply \frac{1}{m-2} times \frac{m+2}{m+2}.
\frac{\frac{2m-\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Since \frac{2m}{\left(m-2\right)\left(m+2\right)} and \frac{m+2}{\left(m-2\right)\left(m+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2m-m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Do the multiplications in 2m-\left(m+2\right).
\frac{\frac{m-2}{\left(m-2\right)\left(m+2\right)}}{1-\frac{1}{m+2}}
Combine like terms in 2m-m-2.
\frac{\frac{1}{m+2}}{1-\frac{1}{m+2}}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{1}{m+2}}{\frac{m+2}{m+2}-\frac{1}{m+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+2}{m+2}.
\frac{\frac{1}{m+2}}{\frac{m+2-1}{m+2}}
Since \frac{m+2}{m+2} and \frac{1}{m+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{m+2}}{\frac{m+1}{m+2}}
Combine like terms in m+2-1.
\frac{m+2}{\left(m+2\right)\left(m+1\right)}
Divide \frac{1}{m+2} by \frac{m+1}{m+2} by multiplying \frac{1}{m+2} by the reciprocal of \frac{m+1}{m+2}.
\frac{1}{m+1}
Cancel out m+2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}