Evaluate
\frac{20m}{4m^{2}-1}
Expand
\frac{20m}{4m^{2}-1}
Share
Copied to clipboard
\frac{\frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)}-\frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m-1 and 2m+1 is \left(2m-1\right)\left(2m+1\right). Multiply \frac{2m+1}{2m-1} times \frac{2m+1}{2m+1}. Multiply \frac{2m-1}{2m+1} times \frac{2m-1}{2m-1}.
\frac{\frac{\left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Since \frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)} and \frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4m^{2}+2m+2m+1-4m^{2}+2m+2m-1}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Do the multiplications in \left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right).
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Combine like terms in 4m^{2}+2m+2m+1-4m^{2}+2m+2m-1.
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{2}{5}}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{8m\times 5}{\left(2m-1\right)\left(2m+1\right)\times 2}
Divide \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by \frac{2}{5} by multiplying \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by the reciprocal of \frac{2}{5}.
\frac{4\times 5m}{\left(2m-1\right)\left(2m+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{20m}{\left(2m-1\right)\left(2m+1\right)}
Multiply 4 and 5 to get 20.
\frac{20m}{\left(2m\right)^{2}-1^{2}}
Consider \left(2m-1\right)\left(2m+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20m}{2^{2}m^{2}-1^{2}}
Expand \left(2m\right)^{2}.
\frac{20m}{4m^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{20m}{4m^{2}-1}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)}-\frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m-1 and 2m+1 is \left(2m-1\right)\left(2m+1\right). Multiply \frac{2m+1}{2m-1} times \frac{2m+1}{2m+1}. Multiply \frac{2m-1}{2m+1} times \frac{2m-1}{2m-1}.
\frac{\frac{\left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Since \frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)} and \frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4m^{2}+2m+2m+1-4m^{2}+2m+2m-1}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Do the multiplications in \left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right).
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Combine like terms in 4m^{2}+2m+2m+1-4m^{2}+2m+2m-1.
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{2}{5}}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{8m\times 5}{\left(2m-1\right)\left(2m+1\right)\times 2}
Divide \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by \frac{2}{5} by multiplying \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by the reciprocal of \frac{2}{5}.
\frac{4\times 5m}{\left(2m-1\right)\left(2m+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{20m}{\left(2m-1\right)\left(2m+1\right)}
Multiply 4 and 5 to get 20.
\frac{20m}{\left(2m\right)^{2}-1^{2}}
Consider \left(2m-1\right)\left(2m+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20m}{2^{2}m^{2}-1^{2}}
Expand \left(2m\right)^{2}.
\frac{20m}{4m^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{20m}{4m^{2}-1}
Calculate 1 to the power of 2 and get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}