Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)}-\frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m-1 and 2m+1 is \left(2m-1\right)\left(2m+1\right). Multiply \frac{2m+1}{2m-1} times \frac{2m+1}{2m+1}. Multiply \frac{2m-1}{2m+1} times \frac{2m-1}{2m-1}.
\frac{\frac{\left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Since \frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)} and \frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4m^{2}+2m+2m+1-4m^{2}+2m+2m-1}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Do the multiplications in \left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right).
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Combine like terms in 4m^{2}+2m+2m+1-4m^{2}+2m+2m-1.
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{2}{5}}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{8m\times 5}{\left(2m-1\right)\left(2m+1\right)\times 2}
Divide \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by \frac{2}{5} by multiplying \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by the reciprocal of \frac{2}{5}.
\frac{4\times 5m}{\left(2m-1\right)\left(2m+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{20m}{\left(2m-1\right)\left(2m+1\right)}
Multiply 4 and 5 to get 20.
\frac{20m}{\left(2m\right)^{2}-1^{2}}
Consider \left(2m-1\right)\left(2m+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20m}{2^{2}m^{2}-1^{2}}
Expand \left(2m\right)^{2}.
\frac{20m}{4m^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{20m}{4m^{2}-1}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)}-\frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m-1 and 2m+1 is \left(2m-1\right)\left(2m+1\right). Multiply \frac{2m+1}{2m-1} times \frac{2m+1}{2m+1}. Multiply \frac{2m-1}{2m+1} times \frac{2m-1}{2m-1}.
\frac{\frac{\left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Since \frac{\left(2m+1\right)\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)} and \frac{\left(2m-1\right)\left(2m-1\right)}{\left(2m-1\right)\left(2m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4m^{2}+2m+2m+1-4m^{2}+2m+2m-1}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Do the multiplications in \left(2m+1\right)\left(2m+1\right)-\left(2m-1\right)\left(2m-1\right).
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{4}{10}}
Combine like terms in 4m^{2}+2m+2m+1-4m^{2}+2m+2m-1.
\frac{\frac{8m}{\left(2m-1\right)\left(2m+1\right)}}{\frac{2}{5}}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{8m\times 5}{\left(2m-1\right)\left(2m+1\right)\times 2}
Divide \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by \frac{2}{5} by multiplying \frac{8m}{\left(2m-1\right)\left(2m+1\right)} by the reciprocal of \frac{2}{5}.
\frac{4\times 5m}{\left(2m-1\right)\left(2m+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{20m}{\left(2m-1\right)\left(2m+1\right)}
Multiply 4 and 5 to get 20.
\frac{20m}{\left(2m\right)^{2}-1^{2}}
Consider \left(2m-1\right)\left(2m+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20m}{2^{2}m^{2}-1^{2}}
Expand \left(2m\right)^{2}.
\frac{20m}{4m^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{20m}{4m^{2}-1}
Calculate 1 to the power of 2 and get 1.