Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)}-\frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k+1 and k-1 is \left(k-1\right)\left(k+1\right). Multiply \frac{2k-1}{k+1} times \frac{k-1}{k-1}. Multiply \frac{2k+1}{k-1} times \frac{k+1}{k+1}.
\frac{\frac{\left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Since \frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)} and \frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2k^{2}-2k-k+1-2k^{2}-2k-k-1}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Do the multiplications in \left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right).
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Combine like terms in 2k^{2}-2k-k+1-2k^{2}-2k-k-1.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1}{k-1}+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k-1}{k-1}.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1+1}{k-1}}
Since \frac{k-1}{k-1} and \frac{1}{k-1} have the same denominator, add them by adding their numerators.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k}{k-1}}
Combine like terms in k-1+1.
\frac{-6k\left(k-1\right)}{\left(k-1\right)\left(k+1\right)k}
Divide \frac{-6k}{\left(k-1\right)\left(k+1\right)} by \frac{k}{k-1} by multiplying \frac{-6k}{\left(k-1\right)\left(k+1\right)} by the reciprocal of \frac{k}{k-1}.
\frac{-6}{k+1}
Cancel out k\left(k-1\right) in both numerator and denominator.
\frac{\frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)}-\frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k+1 and k-1 is \left(k-1\right)\left(k+1\right). Multiply \frac{2k-1}{k+1} times \frac{k-1}{k-1}. Multiply \frac{2k+1}{k-1} times \frac{k+1}{k+1}.
\frac{\frac{\left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Since \frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)} and \frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2k^{2}-2k-k+1-2k^{2}-2k-k-1}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Do the multiplications in \left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right).
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Combine like terms in 2k^{2}-2k-k+1-2k^{2}-2k-k-1.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1}{k-1}+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k-1}{k-1}.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1+1}{k-1}}
Since \frac{k-1}{k-1} and \frac{1}{k-1} have the same denominator, add them by adding their numerators.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k}{k-1}}
Combine like terms in k-1+1.
\frac{-6k\left(k-1\right)}{\left(k-1\right)\left(k+1\right)k}
Divide \frac{-6k}{\left(k-1\right)\left(k+1\right)} by \frac{k}{k-1} by multiplying \frac{-6k}{\left(k-1\right)\left(k+1\right)} by the reciprocal of \frac{k}{k-1}.
\frac{-6}{k+1}
Cancel out k\left(k-1\right) in both numerator and denominator.