Evaluate
-\frac{6}{k+1}
Expand
-\frac{6}{k+1}
Share
Copied to clipboard
\frac{\frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)}-\frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k+1 and k-1 is \left(k-1\right)\left(k+1\right). Multiply \frac{2k-1}{k+1} times \frac{k-1}{k-1}. Multiply \frac{2k+1}{k-1} times \frac{k+1}{k+1}.
\frac{\frac{\left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Since \frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)} and \frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2k^{2}-2k-k+1-2k^{2}-2k-k-1}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Do the multiplications in \left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right).
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Combine like terms in 2k^{2}-2k-k+1-2k^{2}-2k-k-1.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1}{k-1}+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k-1}{k-1}.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1+1}{k-1}}
Since \frac{k-1}{k-1} and \frac{1}{k-1} have the same denominator, add them by adding their numerators.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k}{k-1}}
Combine like terms in k-1+1.
\frac{-6k\left(k-1\right)}{\left(k-1\right)\left(k+1\right)k}
Divide \frac{-6k}{\left(k-1\right)\left(k+1\right)} by \frac{k}{k-1} by multiplying \frac{-6k}{\left(k-1\right)\left(k+1\right)} by the reciprocal of \frac{k}{k-1}.
\frac{-6}{k+1}
Cancel out k\left(k-1\right) in both numerator and denominator.
\frac{\frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)}-\frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k+1 and k-1 is \left(k-1\right)\left(k+1\right). Multiply \frac{2k-1}{k+1} times \frac{k-1}{k-1}. Multiply \frac{2k+1}{k-1} times \frac{k+1}{k+1}.
\frac{\frac{\left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Since \frac{\left(2k-1\right)\left(k-1\right)}{\left(k-1\right)\left(k+1\right)} and \frac{\left(2k+1\right)\left(k+1\right)}{\left(k-1\right)\left(k+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2k^{2}-2k-k+1-2k^{2}-2k-k-1}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Do the multiplications in \left(2k-1\right)\left(k-1\right)-\left(2k+1\right)\left(k+1\right).
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{1+\frac{1}{k-1}}
Combine like terms in 2k^{2}-2k-k+1-2k^{2}-2k-k-1.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1}{k-1}+\frac{1}{k-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k-1}{k-1}.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k-1+1}{k-1}}
Since \frac{k-1}{k-1} and \frac{1}{k-1} have the same denominator, add them by adding their numerators.
\frac{\frac{-6k}{\left(k-1\right)\left(k+1\right)}}{\frac{k}{k-1}}
Combine like terms in k-1+1.
\frac{-6k\left(k-1\right)}{\left(k-1\right)\left(k+1\right)k}
Divide \frac{-6k}{\left(k-1\right)\left(k+1\right)} by \frac{k}{k-1} by multiplying \frac{-6k}{\left(k-1\right)\left(k+1\right)} by the reciprocal of \frac{k}{k-1}.
\frac{-6}{k+1}
Cancel out k\left(k-1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}