Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2}{k^{7}}\right)^{-1}\times \frac{3}{k}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2^{-1}}{\left(k^{7}\right)^{-1}}\times \frac{3}{k}
To raise \frac{2}{k^{7}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{-1}\times 3}{\left(k^{7}\right)^{-1}k}
Multiply \frac{2^{-1}}{\left(k^{7}\right)^{-1}} times \frac{3}{k} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{-1}\times 3}{k^{-7}k}
To raise a power to another power, multiply the exponents. Multiply 7 and -1 to get -7.
\frac{2^{-1}\times 3}{k^{-6}}
To multiply powers of the same base, add their exponents. Add -7 and 1 to get -6.
\frac{\frac{1}{2}\times 3}{k^{-6}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\frac{3}{2}}{k^{-6}}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2k^{-6}}
Express \frac{\frac{3}{2}}{k^{-6}} as a single fraction.