Evaluate
\frac{3k^{6}}{2}
Differentiate w.r.t. k
9k^{5}
Share
Copied to clipboard
\left(\frac{2}{k^{7}}\right)^{-1}\times \frac{3}{k}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2^{-1}}{\left(k^{7}\right)^{-1}}\times \frac{3}{k}
To raise \frac{2}{k^{7}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{-1}\times 3}{\left(k^{7}\right)^{-1}k}
Multiply \frac{2^{-1}}{\left(k^{7}\right)^{-1}} times \frac{3}{k} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{-1}\times 3}{k^{-7}k}
To raise a power to another power, multiply the exponents. Multiply 7 and -1 to get -7.
\frac{2^{-1}\times 3}{k^{-6}}
To multiply powers of the same base, add their exponents. Add -7 and 1 to get -6.
\frac{\frac{1}{2}\times 3}{k^{-6}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\frac{3}{2}}{k^{-6}}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2k^{-6}}
Express \frac{\frac{3}{2}}{k^{-6}} as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}