Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{2i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(\frac{2+2i}{2}\right)^{2}
Do the multiplications in \frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\left(1+i\right)^{2}
Divide 2+2i by 2 to get 1+i.
2i
Calculate 1+i to the power of 2 and get 2i.
Re(\left(\frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{2})
Multiply both numerator and denominator of \frac{2i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(\frac{2+2i}{2}\right)^{2})
Do the multiplications in \frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\left(1+i\right)^{2})
Divide 2+2i by 2 to get 1+i.
Re(2i)
Calculate 1+i to the power of 2 and get 2i.
0
The real part of 2i is 0.