Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2cd^{6}}{-3}\right)^{-3}\times \left(\frac{2c^{-4}d^{2}}{c^{2}d^{-3}}\right)^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \left(\frac{2c^{-4}d^{2}}{c^{2}d^{-3}}\right)^{5}
To raise \frac{2cd^{6}}{-3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \left(\frac{2c^{-4}d^{5}}{c^{2}}\right)^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \left(\frac{2d^{5}}{c^{6}}\right)^{5}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \frac{\left(2d^{5}\right)^{5}}{\left(c^{6}\right)^{5}}
To raise \frac{2d^{5}}{c^{6}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2cd^{6}\right)^{-3}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}\left(c^{6}\right)^{5}}
Multiply \frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}} times \frac{\left(2d^{5}\right)^{5}}{\left(c^{6}\right)^{5}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2cd^{6}\right)^{-3}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
To raise a power to another power, multiply the exponents. Multiply 6 and 5 to get 30.
\frac{2^{-3}c^{-3}\left(d^{6}\right)^{-3}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
Expand \left(2cd^{6}\right)^{-3}.
\frac{2^{-3}c^{-3}d^{-18}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{\frac{1}{8}c^{-3}d^{-18}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}c^{-3}d^{-18}\times 2^{5}\left(d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
Expand \left(2d^{5}\right)^{5}.
\frac{\frac{1}{8}c^{-3}d^{-18}\times 2^{5}d^{25}}{\left(-3\right)^{-3}c^{30}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{\frac{1}{8}c^{-3}d^{-18}\times 32d^{25}}{\left(-3\right)^{-3}c^{30}}
Calculate 2 to the power of 5 and get 32.
\frac{4c^{-3}d^{-18}d^{25}}{\left(-3\right)^{-3}c^{30}}
Multiply \frac{1}{8} and 32 to get 4.
\frac{4c^{-3}d^{7}}{\left(-3\right)^{-3}c^{30}}
To multiply powers of the same base, add their exponents. Add -18 and 25 to get 7.
\frac{4c^{-3}d^{7}}{-\frac{1}{27}c^{30}}
Calculate -3 to the power of -3 and get -\frac{1}{27}.
\frac{4d^{7}}{-\frac{1}{27}c^{33}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{2cd^{6}}{-3}\right)^{-3}\times \left(\frac{2c^{-4}d^{2}}{c^{2}d^{-3}}\right)^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \left(\frac{2c^{-4}d^{2}}{c^{2}d^{-3}}\right)^{5}
To raise \frac{2cd^{6}}{-3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \left(\frac{2c^{-4}d^{5}}{c^{2}}\right)^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \left(\frac{2d^{5}}{c^{6}}\right)^{5}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}}\times \frac{\left(2d^{5}\right)^{5}}{\left(c^{6}\right)^{5}}
To raise \frac{2d^{5}}{c^{6}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2cd^{6}\right)^{-3}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}\left(c^{6}\right)^{5}}
Multiply \frac{\left(2cd^{6}\right)^{-3}}{\left(-3\right)^{-3}} times \frac{\left(2d^{5}\right)^{5}}{\left(c^{6}\right)^{5}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2cd^{6}\right)^{-3}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
To raise a power to another power, multiply the exponents. Multiply 6 and 5 to get 30.
\frac{2^{-3}c^{-3}\left(d^{6}\right)^{-3}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
Expand \left(2cd^{6}\right)^{-3}.
\frac{2^{-3}c^{-3}d^{-18}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
To raise a power to another power, multiply the exponents. Multiply 6 and -3 to get -18.
\frac{\frac{1}{8}c^{-3}d^{-18}\times \left(2d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}c^{-3}d^{-18}\times 2^{5}\left(d^{5}\right)^{5}}{\left(-3\right)^{-3}c^{30}}
Expand \left(2d^{5}\right)^{5}.
\frac{\frac{1}{8}c^{-3}d^{-18}\times 2^{5}d^{25}}{\left(-3\right)^{-3}c^{30}}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{\frac{1}{8}c^{-3}d^{-18}\times 32d^{25}}{\left(-3\right)^{-3}c^{30}}
Calculate 2 to the power of 5 and get 32.
\frac{4c^{-3}d^{-18}d^{25}}{\left(-3\right)^{-3}c^{30}}
Multiply \frac{1}{8} and 32 to get 4.
\frac{4c^{-3}d^{7}}{\left(-3\right)^{-3}c^{30}}
To multiply powers of the same base, add their exponents. Add -18 and 25 to get 7.
\frac{4c^{-3}d^{7}}{-\frac{1}{27}c^{30}}
Calculate -3 to the power of -3 and get -\frac{1}{27}.
\frac{4d^{7}}{-\frac{1}{27}c^{33}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.