Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)}+\frac{b}{3b-2a}}{1-\frac{2a-3b}{2a+3b}}
Factor 4a^{2}-9b^{2}.
\frac{\frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)}+\frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2a-3b\right)\left(2a+3b\right) and 3b-2a is \left(-2a-3b\right)\left(2a-3b\right). Multiply \frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)} times \frac{-1}{-1}. Multiply \frac{b}{3b-2a} times \frac{-\left(-2a-3b\right)}{-\left(-2a-3b\right)}.
\frac{\frac{-2ab+b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Since \frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)} and \frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-2ab+2ba+3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Do the multiplications in -2ab+b\left(-1\right)\left(-2a-3b\right).
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Combine like terms in -2ab+2ba+3b^{2}.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b}{2a+3b}-\frac{2a-3b}{2a+3b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2a+3b}{2a+3b}.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-\left(2a-3b\right)}{2a+3b}}
Since \frac{2a+3b}{2a+3b} and \frac{2a-3b}{2a+3b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-2a+3b}{2a+3b}}
Do the multiplications in 2a+3b-\left(2a-3b\right).
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{6b}{2a+3b}}
Combine like terms in 2a+3b-2a+3b.
\frac{3b^{2}\left(2a+3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)\times 6b}
Divide \frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} by \frac{6b}{2a+3b} by multiplying \frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} by the reciprocal of \frac{6b}{2a+3b}.
\frac{-3\left(-2a-3b\right)b^{2}}{6b\left(-2a-3b\right)\left(2a-3b\right)}
Extract the negative sign in 2a+3b.
\frac{-b}{2\left(2a-3b\right)}
Cancel out 3b\left(-2a-3b\right) in both numerator and denominator.
\frac{b}{-2\left(2a-3b\right)}
Cancel out -1 in both numerator and denominator.
\frac{b}{-4a+6b}
Use the distributive property to multiply -2 by 2a-3b.
\frac{\frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)}+\frac{b}{3b-2a}}{1-\frac{2a-3b}{2a+3b}}
Factor 4a^{2}-9b^{2}.
\frac{\frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)}+\frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2a-3b\right)\left(2a+3b\right) and 3b-2a is \left(-2a-3b\right)\left(2a-3b\right). Multiply \frac{2ab}{\left(2a-3b\right)\left(2a+3b\right)} times \frac{-1}{-1}. Multiply \frac{b}{3b-2a} times \frac{-\left(-2a-3b\right)}{-\left(-2a-3b\right)}.
\frac{\frac{-2ab+b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Since \frac{-2ab}{\left(-2a-3b\right)\left(2a-3b\right)} and \frac{b\left(-1\right)\left(-2a-3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-2ab+2ba+3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Do the multiplications in -2ab+b\left(-1\right)\left(-2a-3b\right).
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{1-\frac{2a-3b}{2a+3b}}
Combine like terms in -2ab+2ba+3b^{2}.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b}{2a+3b}-\frac{2a-3b}{2a+3b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2a+3b}{2a+3b}.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-\left(2a-3b\right)}{2a+3b}}
Since \frac{2a+3b}{2a+3b} and \frac{2a-3b}{2a+3b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{2a+3b-2a+3b}{2a+3b}}
Do the multiplications in 2a+3b-\left(2a-3b\right).
\frac{\frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)}}{\frac{6b}{2a+3b}}
Combine like terms in 2a+3b-2a+3b.
\frac{3b^{2}\left(2a+3b\right)}{\left(-2a-3b\right)\left(2a-3b\right)\times 6b}
Divide \frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} by \frac{6b}{2a+3b} by multiplying \frac{3b^{2}}{\left(-2a-3b\right)\left(2a-3b\right)} by the reciprocal of \frac{6b}{2a+3b}.
\frac{-3\left(-2a-3b\right)b^{2}}{6b\left(-2a-3b\right)\left(2a-3b\right)}
Extract the negative sign in 2a+3b.
\frac{-b}{2\left(2a-3b\right)}
Cancel out 3b\left(-2a-3b\right) in both numerator and denominator.
\frac{b}{-2\left(2a-3b\right)}
Cancel out -1 in both numerator and denominator.
\frac{b}{-4a+6b}
Use the distributive property to multiply -2 by 2a-3b.