Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{2a-b}{\left(a+b\right)\left(a-b\right)}-\frac{2}{a+b}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Factor a^{2}-b^{2}.
\frac{\left(\frac{2a-b}{\left(a+b\right)\left(a-b\right)}-\frac{2\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{2}{a+b} times \frac{a-b}{a-b}.
\frac{\left(\frac{2a-b-2\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Since \frac{2a-b}{\left(a+b\right)\left(a-b\right)} and \frac{2\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{2a-b-2a+2b}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Do the multiplications in 2a-b-2\left(a-b\right).
\frac{\left(\frac{b}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Combine like terms in 2a-b-2a+2b.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
To raise \frac{b}{\left(a+b\right)\left(a-b\right)} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}-1\right)^{2}}
Factor a^{2}-b^{2}.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}-\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
Since \frac{a^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}-a^{2}+ab-ba+b^{2}}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
Do the multiplications in a^{2}-\left(a+b\right)\left(a-b\right).
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{b^{2}}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
Combine like terms in a^{2}-a^{2}+ab-ba+b^{2}.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\frac{\left(b^{2}\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}
To raise \frac{b^{2}}{\left(a+b\right)\left(a-b\right)} to a power, raise both numerator and denominator to the power and then divide.
\frac{b^{2}\left(\left(a+b\right)\left(a-b\right)\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}\left(b^{2}\right)^{2}}
Divide \frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}} by \frac{\left(b^{2}\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}} by multiplying \frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}} by the reciprocal of \frac{\left(b^{2}\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}.
\frac{b^{2}}{\left(b^{2}\right)^{2}}
Cancel out \left(\left(a+b\right)\left(a-b\right)\right)^{2} in both numerator and denominator.
\frac{b^{2}}{b^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{b^{2}}
Rewrite b^{4} as b^{2}b^{2}. Cancel out b^{2} in both numerator and denominator.
\frac{\left(\frac{2a-b}{\left(a+b\right)\left(a-b\right)}-\frac{2}{a+b}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Factor a^{2}-b^{2}.
\frac{\left(\frac{2a-b}{\left(a+b\right)\left(a-b\right)}-\frac{2\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{2}{a+b} times \frac{a-b}{a-b}.
\frac{\left(\frac{2a-b-2\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Since \frac{2a-b}{\left(a+b\right)\left(a-b\right)} and \frac{2\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{2a-b-2a+2b}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Do the multiplications in 2a-b-2\left(a-b\right).
\frac{\left(\frac{b}{\left(a+b\right)\left(a-b\right)}\right)^{2}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
Combine like terms in 2a-b-2a+2b.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}}{a^{2}-b^{2}}-1\right)^{2}}
To raise \frac{b}{\left(a+b\right)\left(a-b\right)} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}-1\right)^{2}}
Factor a^{2}-b^{2}.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}-\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
Since \frac{a^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{a^{2}-a^{2}+ab-ba+b^{2}}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
Do the multiplications in a^{2}-\left(a+b\right)\left(a-b\right).
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\left(\frac{b^{2}}{\left(a+b\right)\left(a-b\right)}\right)^{2}}
Combine like terms in a^{2}-a^{2}+ab-ba+b^{2}.
\frac{\frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}{\frac{\left(b^{2}\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}}
To raise \frac{b^{2}}{\left(a+b\right)\left(a-b\right)} to a power, raise both numerator and denominator to the power and then divide.
\frac{b^{2}\left(\left(a+b\right)\left(a-b\right)\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}\left(b^{2}\right)^{2}}
Divide \frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}} by \frac{\left(b^{2}\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}} by multiplying \frac{b^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}} by the reciprocal of \frac{\left(b^{2}\right)^{2}}{\left(\left(a+b\right)\left(a-b\right)\right)^{2}}.
\frac{b^{2}}{\left(b^{2}\right)^{2}}
Cancel out \left(\left(a+b\right)\left(a-b\right)\right)^{2} in both numerator and denominator.
\frac{b^{2}}{b^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{b^{2}}
Rewrite b^{4} as b^{2}b^{2}. Cancel out b^{2} in both numerator and denominator.