Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a-b}{a+b} times \frac{a-b}{a-b}. Multiply \frac{b}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{\left(2a-b\right)\left(a-b\right)+b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Since \frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2a^{2}-2ab-ba+b^{2}+ba+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Do the multiplications in \left(2a-b\right)\left(a-b\right)+b\left(a+b\right).
\frac{\frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Combine like terms in 2a^{2}-2ab-ba+b^{2}+ba+b^{2}.
\frac{\left(2a^{2}+2b^{2}-2ab\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)\left(a-2b\right)}
Divide \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by \frac{a-2b}{a-b} by multiplying \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{a-2b}{a-b}.
\frac{2a^{2}-2ab+2b^{2}}{\left(a+b\right)\left(a-2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-2ab+ba-2b^{2}}
Apply the distributive property by multiplying each term of a+b by each term of a-2b.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-ab-2b^{2}}
Combine -2ab and ba to get -ab.
\frac{\frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a-b}{a+b} times \frac{a-b}{a-b}. Multiply \frac{b}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{\left(2a-b\right)\left(a-b\right)+b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Since \frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2a^{2}-2ab-ba+b^{2}+ba+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Do the multiplications in \left(2a-b\right)\left(a-b\right)+b\left(a+b\right).
\frac{\frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Combine like terms in 2a^{2}-2ab-ba+b^{2}+ba+b^{2}.
\frac{\left(2a^{2}+2b^{2}-2ab\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)\left(a-2b\right)}
Divide \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by \frac{a-2b}{a-b} by multiplying \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{a-2b}{a-b}.
\frac{2a^{2}-2ab+2b^{2}}{\left(a+b\right)\left(a-2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-2ab+ba-2b^{2}}
Apply the distributive property by multiplying each term of a+b by each term of a-2b.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-ab-2b^{2}}
Combine -2ab and ba to get -ab.