Evaluate
\frac{2\left(a^{2}-ab+b^{2}\right)}{\left(a-2b\right)\left(a+b\right)}
Expand
\frac{2\left(a^{2}-ab+b^{2}\right)}{\left(a-2b\right)\left(a+b\right)}
Share
Copied to clipboard
\frac{\frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a-b}{a+b} times \frac{a-b}{a-b}. Multiply \frac{b}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{\left(2a-b\right)\left(a-b\right)+b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Since \frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2a^{2}-2ab-ba+b^{2}+ba+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Do the multiplications in \left(2a-b\right)\left(a-b\right)+b\left(a+b\right).
\frac{\frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Combine like terms in 2a^{2}-2ab-ba+b^{2}+ba+b^{2}.
\frac{\left(2a^{2}+2b^{2}-2ab\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)\left(a-2b\right)}
Divide \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by \frac{a-2b}{a-b} by multiplying \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{a-2b}{a-b}.
\frac{2a^{2}-2ab+2b^{2}}{\left(a+b\right)\left(a-2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-2ab+ba-2b^{2}}
Apply the distributive property by multiplying each term of a+b by each term of a-2b.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-ab-2b^{2}}
Combine -2ab and ba to get -ab.
\frac{\frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a-b}{a+b} times \frac{a-b}{a-b}. Multiply \frac{b}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{\left(2a-b\right)\left(a-b\right)+b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Since \frac{\left(2a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2a^{2}-2ab-ba+b^{2}+ba+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Do the multiplications in \left(2a-b\right)\left(a-b\right)+b\left(a+b\right).
\frac{\frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{a-2b}{a-b}}
Combine like terms in 2a^{2}-2ab-ba+b^{2}+ba+b^{2}.
\frac{\left(2a^{2}+2b^{2}-2ab\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)\left(a-2b\right)}
Divide \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by \frac{a-2b}{a-b} by multiplying \frac{2a^{2}+2b^{2}-2ab}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{a-2b}{a-b}.
\frac{2a^{2}-2ab+2b^{2}}{\left(a+b\right)\left(a-2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-2ab+ba-2b^{2}}
Apply the distributive property by multiplying each term of a+b by each term of a-2b.
\frac{2a^{2}-2ab+2b^{2}}{a^{2}-ab-2b^{2}}
Combine -2ab and ba to get -ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}