Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2\times 2a}{6}+\frac{3b}{6}\right)\left(\frac{b}{2}-\frac{2a}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{2a}{3} times \frac{2}{2}. Multiply \frac{b}{2} times \frac{3}{3}.
\frac{2\times 2a+3b}{6}\left(\frac{b}{2}-\frac{2a}{3}\right)
Since \frac{2\times 2a}{6} and \frac{3b}{6} have the same denominator, add them by adding their numerators.
\frac{4a+3b}{6}\left(\frac{b}{2}-\frac{2a}{3}\right)
Do the multiplications in 2\times 2a+3b.
\frac{4a+3b}{6}\left(\frac{3b}{6}-\frac{2\times 2a}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{b}{2} times \frac{3}{3}. Multiply \frac{2a}{3} times \frac{2}{2}.
\frac{4a+3b}{6}\times \frac{3b-2\times 2a}{6}
Since \frac{3b}{6} and \frac{2\times 2a}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+3b}{6}\times \frac{3b-4a}{6}
Do the multiplications in 3b-2\times 2a.
\frac{\left(4a+3b\right)\left(3b-4a\right)}{6\times 6}
Multiply \frac{4a+3b}{6} times \frac{3b-4a}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4a+3b\right)\left(3b-4a\right)}{36}
Multiply 6 and 6 to get 36.
\frac{\left(3b\right)^{2}-\left(4a\right)^{2}}{36}
Consider \left(4a+3b\right)\left(3b-4a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3^{2}b^{2}-\left(4a\right)^{2}}{36}
Expand \left(3b\right)^{2}.
\frac{9b^{2}-\left(4a\right)^{2}}{36}
Calculate 3 to the power of 2 and get 9.
\frac{9b^{2}-4^{2}a^{2}}{36}
Expand \left(4a\right)^{2}.
\frac{9b^{2}-16a^{2}}{36}
Calculate 4 to the power of 2 and get 16.
\left(\frac{2\times 2a}{6}+\frac{3b}{6}\right)\left(\frac{b}{2}-\frac{2a}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{2a}{3} times \frac{2}{2}. Multiply \frac{b}{2} times \frac{3}{3}.
\frac{2\times 2a+3b}{6}\left(\frac{b}{2}-\frac{2a}{3}\right)
Since \frac{2\times 2a}{6} and \frac{3b}{6} have the same denominator, add them by adding their numerators.
\frac{4a+3b}{6}\left(\frac{b}{2}-\frac{2a}{3}\right)
Do the multiplications in 2\times 2a+3b.
\frac{4a+3b}{6}\left(\frac{3b}{6}-\frac{2\times 2a}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{b}{2} times \frac{3}{3}. Multiply \frac{2a}{3} times \frac{2}{2}.
\frac{4a+3b}{6}\times \frac{3b-2\times 2a}{6}
Since \frac{3b}{6} and \frac{2\times 2a}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+3b}{6}\times \frac{3b-4a}{6}
Do the multiplications in 3b-2\times 2a.
\frac{\left(4a+3b\right)\left(3b-4a\right)}{6\times 6}
Multiply \frac{4a+3b}{6} times \frac{3b-4a}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4a+3b\right)\left(3b-4a\right)}{36}
Multiply 6 and 6 to get 36.
\frac{\left(3b\right)^{2}-\left(4a\right)^{2}}{36}
Consider \left(4a+3b\right)\left(3b-4a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3^{2}b^{2}-\left(4a\right)^{2}}{36}
Expand \left(3b\right)^{2}.
\frac{9b^{2}-\left(4a\right)^{2}}{36}
Calculate 3 to the power of 2 and get 9.
\frac{9b^{2}-4^{2}a^{2}}{36}
Expand \left(4a\right)^{2}.
\frac{9b^{2}-16a^{2}}{36}
Calculate 4 to the power of 2 and get 16.