Evaluate
\frac{a}{4}+\frac{1}{a}
Expand
\frac{a}{4}+\frac{1}{a}
Share
Copied to clipboard
\frac{\frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2+a and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{2-a}{2+a} times \frac{a-2}{a-2}. Multiply \frac{a+2}{a-2} times \frac{a+2}{a+2}.
\frac{\frac{\left(2-a\right)\left(a-2\right)-\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
Since \frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a-4-a^{2}+2a-a^{2}-2a-2a-4}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
Do the multiplications in \left(2-a\right)\left(a-2\right)-\left(a+2\right)\left(a+2\right).
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
Combine like terms in 2a-4-a^{2}+2a-a^{2}-2a-2a-4.
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{\left(2+a\right)\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{\left(a-2\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-a and a+2 is \left(a+2\right)\left(-a+2\right). Multiply \frac{2+a}{2-a} times \frac{a+2}{a+2}. Multiply \frac{a-2}{a+2} times \frac{-a+2}{-a+2}.
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{\left(2+a\right)\left(a+2\right)+\left(a-2\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)}}
Since \frac{\left(2+a\right)\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)} and \frac{\left(a-2\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{2a+4+a^{2}+2a-a^{2}+2a+2a-4}{\left(a+2\right)\left(-a+2\right)}}
Do the multiplications in \left(2+a\right)\left(a+2\right)+\left(a-2\right)\left(-a+2\right).
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{8a}{\left(a+2\right)\left(-a+2\right)}}
Combine like terms in 2a+4+a^{2}+2a-a^{2}+2a+2a-4.
\frac{\left(-8-2a^{2}\right)\left(a+2\right)\left(-a+2\right)}{\left(a-2\right)\left(a+2\right)\times 8a}
Divide \frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)} by \frac{8a}{\left(a+2\right)\left(-a+2\right)} by multiplying \frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{8a}{\left(a+2\right)\left(-a+2\right)}.
\frac{-\left(a-2\right)\left(a+2\right)\left(-2a^{2}-8\right)}{8a\left(a-2\right)\left(a+2\right)}
Extract the negative sign in -a+2.
\frac{-\left(-2a^{2}-8\right)}{8a}
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.
\frac{-2\left(-a^{2}-4\right)}{8a}
Factor the expressions that are not already factored.
\frac{-\left(-a^{2}-4\right)}{4a}
Cancel out 2 in both numerator and denominator.
\frac{a^{2}+4}{4a}
Expand the expression.
\frac{\frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2+a and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{2-a}{2+a} times \frac{a-2}{a-2}. Multiply \frac{a+2}{a-2} times \frac{a+2}{a+2}.
\frac{\frac{\left(2-a\right)\left(a-2\right)-\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
Since \frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a-4-a^{2}+2a-a^{2}-2a-2a-4}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
Do the multiplications in \left(2-a\right)\left(a-2\right)-\left(a+2\right)\left(a+2\right).
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{2+a}{2-a}+\frac{a-2}{a+2}}
Combine like terms in 2a-4-a^{2}+2a-a^{2}-2a-2a-4.
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{\left(2+a\right)\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)}+\frac{\left(a-2\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-a and a+2 is \left(a+2\right)\left(-a+2\right). Multiply \frac{2+a}{2-a} times \frac{a+2}{a+2}. Multiply \frac{a-2}{a+2} times \frac{-a+2}{-a+2}.
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{\left(2+a\right)\left(a+2\right)+\left(a-2\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)}}
Since \frac{\left(2+a\right)\left(a+2\right)}{\left(a+2\right)\left(-a+2\right)} and \frac{\left(a-2\right)\left(-a+2\right)}{\left(a+2\right)\left(-a+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{2a+4+a^{2}+2a-a^{2}+2a+2a-4}{\left(a+2\right)\left(-a+2\right)}}
Do the multiplications in \left(2+a\right)\left(a+2\right)+\left(a-2\right)\left(-a+2\right).
\frac{\frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)}}{\frac{8a}{\left(a+2\right)\left(-a+2\right)}}
Combine like terms in 2a+4+a^{2}+2a-a^{2}+2a+2a-4.
\frac{\left(-8-2a^{2}\right)\left(a+2\right)\left(-a+2\right)}{\left(a-2\right)\left(a+2\right)\times 8a}
Divide \frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)} by \frac{8a}{\left(a+2\right)\left(-a+2\right)} by multiplying \frac{-8-2a^{2}}{\left(a-2\right)\left(a+2\right)} by the reciprocal of \frac{8a}{\left(a+2\right)\left(-a+2\right)}.
\frac{-\left(a-2\right)\left(a+2\right)\left(-2a^{2}-8\right)}{8a\left(a-2\right)\left(a+2\right)}
Extract the negative sign in -a+2.
\frac{-\left(-2a^{2}-8\right)}{8a}
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.
\frac{-2\left(-a^{2}-4\right)}{8a}
Factor the expressions that are not already factored.
\frac{-\left(-a^{2}-4\right)}{4a}
Cancel out 2 in both numerator and denominator.
\frac{a^{2}+4}{4a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}