Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(x-a\right)}{c-a}+\frac{c-a}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c-a}{c-a}.
\frac{2\left(x-a\right)+c-a}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
Since \frac{2\left(x-a\right)}{c-a} and \frac{c-a}{c-a} have the same denominator, add them by adding their numerators.
\frac{2x-2a+c-a}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
Do the multiplications in 2\left(x-a\right)+c-a.
\frac{2x-3a+c}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
Combine like terms in 2x-2a+c-a.
\frac{\left(2x-3a+c\right)\left(-a+b\right)}{\left(-a+b\right)\left(-a+c\right)}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(-a+b\right)\left(-a+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c-a and \left(c-a\right)\left(b-a\right) is \left(-a+b\right)\left(-a+c\right). Multiply \frac{2x-3a+c}{c-a} times \frac{-a+b}{-a+b}.
\frac{\left(2x-3a+c\right)\left(-a+b\right)-\left(2b-3a+c\right)\left(x-a\right)}{\left(-a+b\right)\left(-a+c\right)}
Since \frac{\left(2x-3a+c\right)\left(-a+b\right)}{\left(-a+b\right)\left(-a+c\right)} and \frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(-a+b\right)\left(-a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2xa+2xb+3a^{2}-3ab-ca+cb-2bx+2ba+3ax-3a^{2}-cx+ca}{\left(-a+b\right)\left(-a+c\right)}
Do the multiplications in \left(2x-3a+c\right)\left(-a+b\right)-\left(2b-3a+c\right)\left(x-a\right).
\frac{xa-ab+cb-cx}{\left(-a+b\right)\left(-a+c\right)}
Combine like terms in -2xa+2xb+3a^{2}-3ab-ca+cb-2bx+2ba+3ax-3a^{2}-cx+ca.
\frac{\left(a-c\right)\left(x-b\right)}{\left(b-a\right)\left(c-a\right)}
Factor the expressions that are not already factored in \frac{xa-ab+cb-cx}{\left(-a+b\right)\left(-a+c\right)}.
\frac{-\left(c-a\right)\left(x-b\right)}{\left(b-a\right)\left(c-a\right)}
Extract the negative sign in a-c.
\frac{-\left(x-b\right)}{-a+b}
Cancel out -a+c in both numerator and denominator.
\frac{-x-\left(-b\right)}{-a+b}
To find the opposite of x-b, find the opposite of each term.
\frac{-x+b}{-a+b}
The opposite of -b is b.
\frac{2\left(x-a\right)}{c-a}+\frac{c-a}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c-a}{c-a}.
\frac{2\left(x-a\right)+c-a}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
Since \frac{2\left(x-a\right)}{c-a} and \frac{c-a}{c-a} have the same denominator, add them by adding their numerators.
\frac{2x-2a+c-a}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
Do the multiplications in 2\left(x-a\right)+c-a.
\frac{2x-3a+c}{c-a}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(c-a\right)\left(b-a\right)}
Combine like terms in 2x-2a+c-a.
\frac{\left(2x-3a+c\right)\left(-a+b\right)}{\left(-a+b\right)\left(-a+c\right)}-\frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(-a+b\right)\left(-a+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c-a and \left(c-a\right)\left(b-a\right) is \left(-a+b\right)\left(-a+c\right). Multiply \frac{2x-3a+c}{c-a} times \frac{-a+b}{-a+b}.
\frac{\left(2x-3a+c\right)\left(-a+b\right)-\left(2b-3a+c\right)\left(x-a\right)}{\left(-a+b\right)\left(-a+c\right)}
Since \frac{\left(2x-3a+c\right)\left(-a+b\right)}{\left(-a+b\right)\left(-a+c\right)} and \frac{\left(2b-3a+c\right)\left(x-a\right)}{\left(-a+b\right)\left(-a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2xa+2xb+3a^{2}-3ab-ca+cb-2bx+2ba+3ax-3a^{2}-cx+ca}{\left(-a+b\right)\left(-a+c\right)}
Do the multiplications in \left(2x-3a+c\right)\left(-a+b\right)-\left(2b-3a+c\right)\left(x-a\right).
\frac{xa-ab+cb-cx}{\left(-a+b\right)\left(-a+c\right)}
Combine like terms in -2xa+2xb+3a^{2}-3ab-ca+cb-2bx+2ba+3ax-3a^{2}-cx+ca.
\frac{\left(a-c\right)\left(x-b\right)}{\left(b-a\right)\left(c-a\right)}
Factor the expressions that are not already factored in \frac{xa-ab+cb-cx}{\left(-a+b\right)\left(-a+c\right)}.
\frac{-\left(c-a\right)\left(x-b\right)}{\left(b-a\right)\left(c-a\right)}
Extract the negative sign in a-c.
\frac{-\left(x-b\right)}{-a+b}
Cancel out -a+c in both numerator and denominator.
\frac{-x-\left(-b\right)}{-a+b}
To find the opposite of x-b, find the opposite of each term.
\frac{-x+b}{-a+b}
The opposite of -b is b.