Evaluate
\frac{1}{2x-5}
Expand
\frac{1}{2\left(x-\frac{5}{2}\right)}
Graph
Share
Copied to clipboard
\left(\frac{2\left(1-x\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2}{x-2}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Factor x^{2}-4.
\left(\frac{2\left(1-x\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x-2} times \frac{x+2}{x+2}.
\left(\frac{2\left(1-x\right)+2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Since \frac{2\left(1-x\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\left(\frac{2-2x+2x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Do the multiplications in 2\left(1-x\right)+2\left(x+2\right).
\left(\frac{6}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Combine like terms in 2-2x+2x+4.
\left(\frac{6}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x\left(x+2\right)}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Factor x^{2}+2x.
\left(\frac{6x}{x\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{6}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}. Multiply \frac{3}{x\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{6x-3\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Since \frac{6x}{x\left(x-2\right)\left(x+2\right)} and \frac{3\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x-3x+6}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Do the multiplications in 6x-3\left(x-2\right).
\frac{3x+6}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Combine like terms in 6x-3x+6.
\frac{3\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Factor the expressions that are not already factored in \frac{3x+6}{x\left(x-2\right)\left(x+2\right)}.
\frac{3}{x\left(x-2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Cancel out x+2 in both numerator and denominator.
\frac{3}{x\left(x-2\right)}\times \frac{x\left(x-2\right)\left(2x-5\right)}{3\left(2x-5\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}.
\frac{3}{x\left(x-2\right)}\times \frac{x\left(x-2\right)}{3\left(2x-5\right)}
Cancel out 2x-5 in both numerator and denominator.
\frac{3x\left(x-2\right)}{x\left(x-2\right)\times 3\left(2x-5\right)}
Multiply \frac{3}{x\left(x-2\right)} times \frac{x\left(x-2\right)}{3\left(2x-5\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2x-5}
Cancel out 3x\left(x-2\right) in both numerator and denominator.
\left(\frac{2\left(1-x\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2}{x-2}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Factor x^{2}-4.
\left(\frac{2\left(1-x\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x-2} times \frac{x+2}{x+2}.
\left(\frac{2\left(1-x\right)+2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Since \frac{2\left(1-x\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\left(\frac{2-2x+2x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Do the multiplications in 2\left(1-x\right)+2\left(x+2\right).
\left(\frac{6}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x^{2}+2x}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Combine like terms in 2-2x+2x+4.
\left(\frac{6}{\left(x-2\right)\left(x+2\right)}-\frac{3}{x\left(x+2\right)}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Factor x^{2}+2x.
\left(\frac{6x}{x\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right)\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{6}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}. Multiply \frac{3}{x\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{6x-3\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Since \frac{6x}{x\left(x-2\right)\left(x+2\right)} and \frac{3\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x-3x+6}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Do the multiplications in 6x-3\left(x-2\right).
\frac{3x+6}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Combine like terms in 6x-3x+6.
\frac{3\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Factor the expressions that are not already factored in \frac{3x+6}{x\left(x-2\right)\left(x+2\right)}.
\frac{3}{x\left(x-2\right)}\times \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}
Cancel out x+2 in both numerator and denominator.
\frac{3}{x\left(x-2\right)}\times \frac{x\left(x-2\right)\left(2x-5\right)}{3\left(2x-5\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}-9x^{2}+10x}{12x^{2}-60x+75}.
\frac{3}{x\left(x-2\right)}\times \frac{x\left(x-2\right)}{3\left(2x-5\right)}
Cancel out 2x-5 in both numerator and denominator.
\frac{3x\left(x-2\right)}{x\left(x-2\right)\times 3\left(2x-5\right)}
Multiply \frac{3}{x\left(x-2\right)} times \frac{x\left(x-2\right)}{3\left(2x-5\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2x-5}
Cancel out 3x\left(x-2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}