Evaluate
\frac{5xy}{8}+\frac{5y}{3}
Expand
\frac{5xy}{8}+\frac{5y}{3}
Quiz
Algebra
5 problems similar to:
( \frac { 2 } { x } + \frac { 3 } { 4 } ) : \frac { 6 } { 5 x y } =
Share
Copied to clipboard
\frac{\left(\frac{2}{x}+\frac{3}{4}\right)\times 5xy}{6}
Divide \frac{2}{x}+\frac{3}{4} by \frac{6}{5xy} by multiplying \frac{2}{x}+\frac{3}{4} by the reciprocal of \frac{6}{5xy}.
\frac{\left(\frac{2\times 4}{4x}+\frac{3x}{4x}\right)\times 5xy}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{2}{x} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{x}{x}.
\frac{\frac{2\times 4+3x}{4x}\times 5xy}{6}
Since \frac{2\times 4}{4x} and \frac{3x}{4x} have the same denominator, add them by adding their numerators.
\frac{\frac{8+3x}{4x}\times 5xy}{6}
Do the multiplications in 2\times 4+3x.
\frac{\frac{\left(8+3x\right)\times 5}{4x}xy}{6}
Express \frac{8+3x}{4x}\times 5 as a single fraction.
\frac{\frac{\left(8+3x\right)\times 5x}{4x}y}{6}
Express \frac{\left(8+3x\right)\times 5}{4x}x as a single fraction.
\frac{\frac{5\left(3x+8\right)}{4}y}{6}
Cancel out x in both numerator and denominator.
\frac{\frac{5\left(3x+8\right)y}{4}}{6}
Express \frac{5\left(3x+8\right)}{4}y as a single fraction.
\frac{5\left(3x+8\right)y}{4\times 6}
Express \frac{\frac{5\left(3x+8\right)y}{4}}{6} as a single fraction.
\frac{5\left(3x+8\right)y}{24}
Multiply 4 and 6 to get 24.
\frac{\left(15x+40\right)y}{24}
Use the distributive property to multiply 5 by 3x+8.
\frac{15xy+40y}{24}
Use the distributive property to multiply 15x+40 by y.
\frac{\left(\frac{2}{x}+\frac{3}{4}\right)\times 5xy}{6}
Divide \frac{2}{x}+\frac{3}{4} by \frac{6}{5xy} by multiplying \frac{2}{x}+\frac{3}{4} by the reciprocal of \frac{6}{5xy}.
\frac{\left(\frac{2\times 4}{4x}+\frac{3x}{4x}\right)\times 5xy}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{2}{x} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{x}{x}.
\frac{\frac{2\times 4+3x}{4x}\times 5xy}{6}
Since \frac{2\times 4}{4x} and \frac{3x}{4x} have the same denominator, add them by adding their numerators.
\frac{\frac{8+3x}{4x}\times 5xy}{6}
Do the multiplications in 2\times 4+3x.
\frac{\frac{\left(8+3x\right)\times 5}{4x}xy}{6}
Express \frac{8+3x}{4x}\times 5 as a single fraction.
\frac{\frac{\left(8+3x\right)\times 5x}{4x}y}{6}
Express \frac{\left(8+3x\right)\times 5}{4x}x as a single fraction.
\frac{\frac{5\left(3x+8\right)}{4}y}{6}
Cancel out x in both numerator and denominator.
\frac{\frac{5\left(3x+8\right)y}{4}}{6}
Express \frac{5\left(3x+8\right)}{4}y as a single fraction.
\frac{5\left(3x+8\right)y}{4\times 6}
Express \frac{\frac{5\left(3x+8\right)y}{4}}{6} as a single fraction.
\frac{5\left(3x+8\right)y}{24}
Multiply 4 and 6 to get 24.
\frac{\left(15x+40\right)y}{24}
Use the distributive property to multiply 5 by 3x+8.
\frac{15xy+40y}{24}
Use the distributive property to multiply 15x+40 by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}