Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{2}{x}+\frac{3}{4}\right)\times 5xy}{6}
Divide \frac{2}{x}+\frac{3}{4} by \frac{6}{5xy} by multiplying \frac{2}{x}+\frac{3}{4} by the reciprocal of \frac{6}{5xy}.
\frac{\left(\frac{2\times 4}{4x}+\frac{3x}{4x}\right)\times 5xy}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{2}{x} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{x}{x}.
\frac{\frac{2\times 4+3x}{4x}\times 5xy}{6}
Since \frac{2\times 4}{4x} and \frac{3x}{4x} have the same denominator, add them by adding their numerators.
\frac{\frac{8+3x}{4x}\times 5xy}{6}
Do the multiplications in 2\times 4+3x.
\frac{\frac{\left(8+3x\right)\times 5}{4x}xy}{6}
Express \frac{8+3x}{4x}\times 5 as a single fraction.
\frac{\frac{\left(8+3x\right)\times 5x}{4x}y}{6}
Express \frac{\left(8+3x\right)\times 5}{4x}x as a single fraction.
\frac{\frac{5\left(3x+8\right)}{4}y}{6}
Cancel out x in both numerator and denominator.
\frac{\frac{5\left(3x+8\right)y}{4}}{6}
Express \frac{5\left(3x+8\right)}{4}y as a single fraction.
\frac{5\left(3x+8\right)y}{4\times 6}
Express \frac{\frac{5\left(3x+8\right)y}{4}}{6} as a single fraction.
\frac{5\left(3x+8\right)y}{24}
Multiply 4 and 6 to get 24.
\frac{\left(15x+40\right)y}{24}
Use the distributive property to multiply 5 by 3x+8.
\frac{15xy+40y}{24}
Use the distributive property to multiply 15x+40 by y.
\frac{\left(\frac{2}{x}+\frac{3}{4}\right)\times 5xy}{6}
Divide \frac{2}{x}+\frac{3}{4} by \frac{6}{5xy} by multiplying \frac{2}{x}+\frac{3}{4} by the reciprocal of \frac{6}{5xy}.
\frac{\left(\frac{2\times 4}{4x}+\frac{3x}{4x}\right)\times 5xy}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{2}{x} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{x}{x}.
\frac{\frac{2\times 4+3x}{4x}\times 5xy}{6}
Since \frac{2\times 4}{4x} and \frac{3x}{4x} have the same denominator, add them by adding their numerators.
\frac{\frac{8+3x}{4x}\times 5xy}{6}
Do the multiplications in 2\times 4+3x.
\frac{\frac{\left(8+3x\right)\times 5}{4x}xy}{6}
Express \frac{8+3x}{4x}\times 5 as a single fraction.
\frac{\frac{\left(8+3x\right)\times 5x}{4x}y}{6}
Express \frac{\left(8+3x\right)\times 5}{4x}x as a single fraction.
\frac{\frac{5\left(3x+8\right)}{4}y}{6}
Cancel out x in both numerator and denominator.
\frac{\frac{5\left(3x+8\right)y}{4}}{6}
Express \frac{5\left(3x+8\right)}{4}y as a single fraction.
\frac{5\left(3x+8\right)y}{4\times 6}
Express \frac{\frac{5\left(3x+8\right)y}{4}}{6} as a single fraction.
\frac{5\left(3x+8\right)y}{24}
Multiply 4 and 6 to get 24.
\frac{\left(15x+40\right)y}{24}
Use the distributive property to multiply 5 by 3x+8.
\frac{15xy+40y}{24}
Use the distributive property to multiply 15x+40 by y.