Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)}+\frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+5 and x+3 is \left(x+3\right)\left(x+5\right). Multiply \frac{2}{x+5} times \frac{x+3}{x+3}. Multiply \frac{4}{x+3} times \frac{x+5}{x+5}.
\frac{\frac{2\left(x+3\right)+4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Since \frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)} and \frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+6+4x+20}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Do the multiplications in 2\left(x+3\right)+4\left(x+5\right).
\frac{\frac{6x+26}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Combine like terms in 2x+6+4x+20.
\frac{\left(6x+26\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Divide \frac{6x+26}{\left(x+3\right)\left(x+5\right)} by \frac{3x+13}{x^{2}+3x+15} by multiplying \frac{6x+26}{\left(x+3\right)\left(x+5\right)} by the reciprocal of \frac{3x+13}{x^{2}+3x+15}.
\frac{2\left(3x+13\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Factor the expressions that are not already factored.
\frac{2\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)}
Cancel out 3x+13 in both numerator and denominator.
\frac{2x^{2}+6x+30}{x^{2}+8x+15}
Expand the expression.
\frac{\frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)}+\frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+5 and x+3 is \left(x+3\right)\left(x+5\right). Multiply \frac{2}{x+5} times \frac{x+3}{x+3}. Multiply \frac{4}{x+3} times \frac{x+5}{x+5}.
\frac{\frac{2\left(x+3\right)+4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Since \frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)} and \frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+6+4x+20}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Do the multiplications in 2\left(x+3\right)+4\left(x+5\right).
\frac{\frac{6x+26}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Combine like terms in 2x+6+4x+20.
\frac{\left(6x+26\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Divide \frac{6x+26}{\left(x+3\right)\left(x+5\right)} by \frac{3x+13}{x^{2}+3x+15} by multiplying \frac{6x+26}{\left(x+3\right)\left(x+5\right)} by the reciprocal of \frac{3x+13}{x^{2}+3x+15}.
\frac{2\left(3x+13\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Factor the expressions that are not already factored.
\frac{2\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)}
Cancel out 3x+13 in both numerator and denominator.
\frac{2x^{2}+6x+30}{x^{2}+8x+15}
Expand the expression.