Evaluate
-\frac{x}{x+3}
Expand
-\frac{x}{x+3}
Graph
Share
Copied to clipboard
\frac{\frac{2}{x+2}-\frac{x+2}{x+2}}{\frac{1}{x+2}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{\frac{2-\left(x+2\right)}{x+2}}{\frac{1}{x+2}+1}
Since \frac{2}{x+2} and \frac{x+2}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2-x-2}{x+2}}{\frac{1}{x+2}+1}
Do the multiplications in 2-\left(x+2\right).
\frac{\frac{-x}{x+2}}{\frac{1}{x+2}+1}
Combine like terms in 2-x-2.
\frac{\frac{-x}{x+2}}{\frac{1}{x+2}+\frac{x+2}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{\frac{-x}{x+2}}{\frac{1+x+2}{x+2}}
Since \frac{1}{x+2} and \frac{x+2}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{-x}{x+2}}{\frac{3+x}{x+2}}
Combine like terms in 1+x+2.
\frac{-x\left(x+2\right)}{\left(x+2\right)\left(3+x\right)}
Divide \frac{-x}{x+2} by \frac{3+x}{x+2} by multiplying \frac{-x}{x+2} by the reciprocal of \frac{3+x}{x+2}.
\frac{-x}{x+3}
Cancel out x+2 in both numerator and denominator.
\frac{\frac{2}{x+2}-\frac{x+2}{x+2}}{\frac{1}{x+2}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{\frac{2-\left(x+2\right)}{x+2}}{\frac{1}{x+2}+1}
Since \frac{2}{x+2} and \frac{x+2}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2-x-2}{x+2}}{\frac{1}{x+2}+1}
Do the multiplications in 2-\left(x+2\right).
\frac{\frac{-x}{x+2}}{\frac{1}{x+2}+1}
Combine like terms in 2-x-2.
\frac{\frac{-x}{x+2}}{\frac{1}{x+2}+\frac{x+2}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{\frac{-x}{x+2}}{\frac{1+x+2}{x+2}}
Since \frac{1}{x+2} and \frac{x+2}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{-x}{x+2}}{\frac{3+x}{x+2}}
Combine like terms in 1+x+2.
\frac{-x\left(x+2\right)}{\left(x+2\right)\left(3+x\right)}
Divide \frac{-x}{x+2} by \frac{3+x}{x+2} by multiplying \frac{-x}{x+2} by the reciprocal of \frac{3+x}{x+2}.
\frac{-x}{x+3}
Cancel out x+2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}