Solve for k
k=\frac{\sqrt{2\left(\sqrt{37}+1\right)}}{6}\approx 0.627285268
k=-\frac{\sqrt{2\left(\sqrt{37}+1\right)}}{6}\approx -0.627285268
Share
Copied to clipboard
\frac{2^{2}}{\left(k^{2}\right)^{2}}+\left(\frac{2}{k}\right)^{2}=36
To raise \frac{2}{k^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{2}}{\left(k^{2}\right)^{2}}+\frac{2^{2}}{k^{2}}=36
To raise \frac{2}{k} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{2}}{k^{4}}+\frac{2^{2}k^{2}}{k^{4}}=36
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(k^{2}\right)^{2} and k^{2} is k^{4}. Multiply \frac{2^{2}}{k^{2}} times \frac{k^{2}}{k^{2}}.
\frac{2^{2}+2^{2}k^{2}}{k^{4}}=36
Since \frac{2^{2}}{k^{4}} and \frac{2^{2}k^{2}}{k^{4}} have the same denominator, add them by adding their numerators.
\frac{2^{2}+4k^{2}}{k^{4}}=36
Do the multiplications in 2^{2}+2^{2}k^{2}.
\frac{4+4k^{2}}{k^{4}}=36
Combine like terms in 2^{2}+4k^{2}.
\frac{4+4k^{2}}{k^{4}}-36=0
Subtract 36 from both sides.
\frac{4+4k^{2}}{k^{4}}-\frac{36k^{4}}{k^{4}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{k^{4}}{k^{4}}.
\frac{4+4k^{2}-36k^{4}}{k^{4}}=0
Since \frac{4+4k^{2}}{k^{4}} and \frac{36k^{4}}{k^{4}} have the same denominator, subtract them by subtracting their numerators.
4+4k^{2}-36k^{4}=0
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k^{4}.
-36t^{2}+4t+4=0
Substitute t for k^{2}.
t=\frac{-4±\sqrt{4^{2}-4\left(-36\right)\times 4}}{-36\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -36 for a, 4 for b, and 4 for c in the quadratic formula.
t=\frac{-4±4\sqrt{37}}{-72}
Do the calculations.
t=\frac{1-\sqrt{37}}{18} t=\frac{\sqrt{37}+1}{18}
Solve the equation t=\frac{-4±4\sqrt{37}}{-72} when ± is plus and when ± is minus.
k=\frac{\sqrt{2\sqrt{37}+2}}{6} k=-\frac{\sqrt{2\sqrt{37}+2}}{6}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}