Evaluate
-\frac{1}{a}
Expand
-\frac{1}{a}
Share
Copied to clipboard
\left(\frac{2\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{4-a^{2}}{10a-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a+2 is \left(a-2\right)\left(a+2\right). Multiply \frac{2}{a-2} times \frac{a+2}{a+2}. Multiply \frac{3}{a+2} times \frac{a-2}{a-2}.
\frac{2\left(a+2\right)-3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\times \frac{4-a^{2}}{10a-a^{2}}
Since \frac{2\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+4-3a+6}{\left(a-2\right)\left(a+2\right)}\times \frac{4-a^{2}}{10a-a^{2}}
Do the multiplications in 2\left(a+2\right)-3\left(a-2\right).
\frac{-a+10}{\left(a-2\right)\left(a+2\right)}\times \frac{4-a^{2}}{10a-a^{2}}
Combine like terms in 2a+4-3a+6.
\frac{\left(-a+10\right)\left(4-a^{2}\right)}{\left(a-2\right)\left(a+2\right)\left(10a-a^{2}\right)}
Multiply \frac{-a+10}{\left(a-2\right)\left(a+2\right)} times \frac{4-a^{2}}{10a-a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)\left(-a-2\right)\left(-a+10\right)}{a\left(a-2\right)\left(a+2\right)\left(-a+10\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-2\right)\left(a+2\right)\left(-a+10\right)}{a\left(a-2\right)\left(a+2\right)\left(-a+10\right)}
Extract the negative sign in -2-a.
\frac{-1}{a}
Cancel out \left(a-2\right)\left(a+2\right)\left(-a+10\right) in both numerator and denominator.
\left(\frac{2\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{4-a^{2}}{10a-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a+2 is \left(a-2\right)\left(a+2\right). Multiply \frac{2}{a-2} times \frac{a+2}{a+2}. Multiply \frac{3}{a+2} times \frac{a-2}{a-2}.
\frac{2\left(a+2\right)-3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\times \frac{4-a^{2}}{10a-a^{2}}
Since \frac{2\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+4-3a+6}{\left(a-2\right)\left(a+2\right)}\times \frac{4-a^{2}}{10a-a^{2}}
Do the multiplications in 2\left(a+2\right)-3\left(a-2\right).
\frac{-a+10}{\left(a-2\right)\left(a+2\right)}\times \frac{4-a^{2}}{10a-a^{2}}
Combine like terms in 2a+4-3a+6.
\frac{\left(-a+10\right)\left(4-a^{2}\right)}{\left(a-2\right)\left(a+2\right)\left(10a-a^{2}\right)}
Multiply \frac{-a+10}{\left(a-2\right)\left(a+2\right)} times \frac{4-a^{2}}{10a-a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)\left(-a-2\right)\left(-a+10\right)}{a\left(a-2\right)\left(a+2\right)\left(-a+10\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-2\right)\left(a+2\right)\left(-a+10\right)}{a\left(a-2\right)\left(a+2\right)\left(-a+10\right)}
Extract the negative sign in -2-a.
\frac{-1}{a}
Cancel out \left(a-2\right)\left(a+2\right)\left(-a+10\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}