Evaluate
\frac{29}{9}\approx 3.222222222
Factor
\frac{29}{3 ^ {2}} = 3\frac{2}{9} = 3.2222222222222223
Share
Copied to clipboard
\frac{\frac{2}{9}+\frac{36}{9}+\frac{1\times 6+5}{6}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Convert 4 to fraction \frac{36}{9}.
\frac{\frac{2+36}{9}+\frac{1\times 6+5}{6}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Since \frac{2}{9} and \frac{36}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{38}{9}+\frac{1\times 6+5}{6}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Add 2 and 36 to get 38.
\frac{\frac{38}{9}+\frac{6+5}{6}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Multiply 1 and 6 to get 6.
\frac{\frac{38}{9}+\frac{11}{6}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Add 6 and 5 to get 11.
\frac{\frac{76}{18}+\frac{33}{18}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Least common multiple of 9 and 6 is 18. Convert \frac{38}{9} and \frac{11}{6} to fractions with denominator 18.
\frac{\frac{76+33}{18}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Since \frac{76}{18} and \frac{33}{18} have the same denominator, add them by adding their numerators.
\frac{\frac{109}{18}}{\frac{2\times 3+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Add 76 and 33 to get 109.
\frac{\frac{109}{18}}{\frac{6+2}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Multiply 2 and 3 to get 6.
\frac{\frac{109}{18}}{\frac{8}{3}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Add 6 and 2 to get 8.
\frac{\frac{109}{18}}{\frac{16}{6}-\frac{1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Least common multiple of 3 and 6 is 6. Convert \frac{8}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{\frac{109}{18}}{\frac{16-1}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Since \frac{16}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{109}{18}}{\frac{15}{6}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Subtract 1 from 16 to get 15.
\frac{\frac{109}{18}}{\frac{5}{2}}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
\frac{109}{18}\times \frac{2}{5}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Divide \frac{109}{18} by \frac{5}{2} by multiplying \frac{109}{18} by the reciprocal of \frac{5}{2}.
\frac{109\times 2}{18\times 5}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Multiply \frac{109}{18} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{218}{90}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Do the multiplications in the fraction \frac{109\times 2}{18\times 5}.
\frac{109}{45}+\frac{2}{3}\times \frac{1\times 5+1}{5}
Reduce the fraction \frac{218}{90} to lowest terms by extracting and canceling out 2.
\frac{109}{45}+\frac{2}{3}\times \frac{5+1}{5}
Multiply 1 and 5 to get 5.
\frac{109}{45}+\frac{2}{3}\times \frac{6}{5}
Add 5 and 1 to get 6.
\frac{109}{45}+\frac{2\times 6}{3\times 5}
Multiply \frac{2}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{109}{45}+\frac{12}{15}
Do the multiplications in the fraction \frac{2\times 6}{3\times 5}.
\frac{109}{45}+\frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\frac{109}{45}+\frac{36}{45}
Least common multiple of 45 and 5 is 45. Convert \frac{109}{45} and \frac{4}{5} to fractions with denominator 45.
\frac{109+36}{45}
Since \frac{109}{45} and \frac{36}{45} have the same denominator, add them by adding their numerators.
\frac{145}{45}
Add 109 and 36 to get 145.
\frac{29}{9}
Reduce the fraction \frac{145}{45} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}