Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{4}y^{2}-\frac{2}{4}y\right)\left(\frac{2}{3}y+4\right)-\frac{2}{4}y\left(y^{2}-4y\right)
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{4}y^{2}-\frac{1}{2}y\right)\left(\frac{2}{3}y+4\right)-\frac{2}{4}y\left(y^{2}-4y\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{6}y^{3}+\frac{2}{3}y^{2}-2y-\frac{2}{4}y\left(y^{2}-4y\right)
Use the distributive property to multiply \frac{1}{4}y^{2}-\frac{1}{2}y by \frac{2}{3}y+4 and combine like terms.
\frac{1}{6}y^{3}+\frac{2}{3}y^{2}-2y-\frac{1}{2}y\left(y^{2}-4y\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{6}y^{3}+\frac{2}{3}y^{2}-2y-\frac{1}{2}y^{3}+2y^{2}
Use the distributive property to multiply -\frac{1}{2}y by y^{2}-4y.
-\frac{1}{3}y^{3}+\frac{2}{3}y^{2}-2y+2y^{2}
Combine \frac{1}{6}y^{3} and -\frac{1}{2}y^{3} to get -\frac{1}{3}y^{3}.
-\frac{1}{3}y^{3}+\frac{8}{3}y^{2}-2y
Combine \frac{2}{3}y^{2} and 2y^{2} to get \frac{8}{3}y^{2}.
\left(\frac{1}{4}y^{2}-\frac{2}{4}y\right)\left(\frac{2}{3}y+4\right)-\frac{2}{4}y\left(y^{2}-4y\right)
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{4}y^{2}-\frac{1}{2}y\right)\left(\frac{2}{3}y+4\right)-\frac{2}{4}y\left(y^{2}-4y\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{6}y^{3}+\frac{2}{3}y^{2}-2y-\frac{2}{4}y\left(y^{2}-4y\right)
Use the distributive property to multiply \frac{1}{4}y^{2}-\frac{1}{2}y by \frac{2}{3}y+4 and combine like terms.
\frac{1}{6}y^{3}+\frac{2}{3}y^{2}-2y-\frac{1}{2}y\left(y^{2}-4y\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{6}y^{3}+\frac{2}{3}y^{2}-2y-\frac{1}{2}y^{3}+2y^{2}
Use the distributive property to multiply -\frac{1}{2}y by y^{2}-4y.
-\frac{1}{3}y^{3}+\frac{2}{3}y^{2}-2y+2y^{2}
Combine \frac{1}{6}y^{3} and -\frac{1}{2}y^{3} to get -\frac{1}{3}y^{3}.
-\frac{1}{3}y^{3}+\frac{8}{3}y^{2}-2y
Combine \frac{2}{3}y^{2} and 2y^{2} to get \frac{8}{3}y^{2}.