Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{10}{35}-\frac{28}{35}+\frac{2}{8}\right)\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Least common multiple of 7 and 5 is 35. Convert \frac{2}{7} and \frac{4}{5} to fractions with denominator 35.
\left(\frac{10-28}{35}+\frac{2}{8}\right)\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Since \frac{10}{35} and \frac{28}{35} have the same denominator, subtract them by subtracting their numerators.
\left(-\frac{18}{35}+\frac{2}{8}\right)\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Subtract 28 from 10 to get -18.
\left(-\frac{18}{35}+\frac{1}{4}\right)\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\left(-\frac{72}{140}+\frac{35}{140}\right)\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Least common multiple of 35 and 4 is 140. Convert -\frac{18}{35} and \frac{1}{4} to fractions with denominator 140.
\frac{-72+35}{140}\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Since -\frac{72}{140} and \frac{35}{140} have the same denominator, add them by adding their numerators.
-\frac{37}{140}\times \frac{3}{2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Add -72 and 35 to get -37.
\frac{-37\times 3}{140\times 2}-\frac{\frac{7}{5}}{\frac{4}{7}}
Multiply -\frac{37}{140} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-111}{280}-\frac{\frac{7}{5}}{\frac{4}{7}}
Do the multiplications in the fraction \frac{-37\times 3}{140\times 2}.
-\frac{111}{280}-\frac{\frac{7}{5}}{\frac{4}{7}}
Fraction \frac{-111}{280} can be rewritten as -\frac{111}{280} by extracting the negative sign.
-\frac{111}{280}-\frac{7}{5}\times \frac{7}{4}
Divide \frac{7}{5} by \frac{4}{7} by multiplying \frac{7}{5} by the reciprocal of \frac{4}{7}.
-\frac{111}{280}-\frac{7\times 7}{5\times 4}
Multiply \frac{7}{5} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{111}{280}-\frac{49}{20}
Do the multiplications in the fraction \frac{7\times 7}{5\times 4}.
-\frac{111}{280}-\frac{686}{280}
Least common multiple of 280 and 20 is 280. Convert -\frac{111}{280} and \frac{49}{20} to fractions with denominator 280.
\frac{-111-686}{280}
Since -\frac{111}{280} and \frac{686}{280} have the same denominator, subtract them by subtracting their numerators.
-\frac{797}{280}
Subtract 686 from -111 to get -797.