Evaluate
\frac{2}{7}\approx 0.285714286
Factor
\frac{2}{7} = 0.2857142857142857
Share
Copied to clipboard
\frac{\frac{2}{7}\times \frac{3+2}{3}+\frac{1}{7}\times \frac{2}{3}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Multiply 1 and 3 to get 3.
\frac{\frac{2}{7}\times \frac{5}{3}+\frac{1}{7}\times \frac{2}{3}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Add 3 and 2 to get 5.
\frac{\frac{2\times 5}{7\times 3}+\frac{1}{7}\times \frac{2}{3}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Multiply \frac{2}{7} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{10}{21}+\frac{1}{7}\times \frac{2}{3}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Do the multiplications in the fraction \frac{2\times 5}{7\times 3}.
\frac{\frac{10}{21}+\frac{1\times 2}{7\times 3}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Multiply \frac{1}{7} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{10}{21}+\frac{2}{21}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Do the multiplications in the fraction \frac{1\times 2}{7\times 3}.
\frac{\frac{10+2}{21}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Since \frac{10}{21} and \frac{2}{21} have the same denominator, add them by adding their numerators.
\frac{\frac{12}{21}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Add 10 and 2 to get 12.
\frac{\frac{4}{7}}{\frac{2}{3}\times \frac{2\times 4+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Reduce the fraction \frac{12}{21} to lowest terms by extracting and canceling out 3.
\frac{\frac{4}{7}}{\frac{2}{3}\times \frac{8+1}{4}+\frac{2}{3}\times \frac{3}{4}}
Multiply 2 and 4 to get 8.
\frac{\frac{4}{7}}{\frac{2}{3}\times \frac{9}{4}+\frac{2}{3}\times \frac{3}{4}}
Add 8 and 1 to get 9.
\frac{\frac{4}{7}}{\frac{2\times 9}{3\times 4}+\frac{2}{3}\times \frac{3}{4}}
Multiply \frac{2}{3} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4}{7}}{\frac{18}{12}+\frac{2}{3}\times \frac{3}{4}}
Do the multiplications in the fraction \frac{2\times 9}{3\times 4}.
\frac{\frac{4}{7}}{\frac{3}{2}+\frac{2}{3}\times \frac{3}{4}}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
\frac{\frac{4}{7}}{\frac{3}{2}+\frac{2\times 3}{3\times 4}}
Multiply \frac{2}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4}{7}}{\frac{3}{2}+\frac{2}{4}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{4}{7}}{\frac{3}{2}+\frac{1}{2}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{4}{7}}{\frac{3+1}{2}}
Since \frac{3}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{7}}{\frac{4}{2}}
Add 3 and 1 to get 4.
\frac{\frac{4}{7}}{2}
Divide 4 by 2 to get 2.
\frac{4}{7\times 2}
Express \frac{\frac{4}{7}}{2} as a single fraction.
\frac{4}{14}
Multiply 7 and 2 to get 14.
\frac{2}{7}
Reduce the fraction \frac{4}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}