Evaluate
\frac{\left(x-1\right)\left(x+2\right)}{5}
Expand
\frac{x^{2}+x-2}{5}
Graph
Share
Copied to clipboard
\frac{2}{5}x\times \frac{1}{2}x+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{2}{5}x+\frac{4}{5} by each term of \frac{1}{2}x-\frac{1}{2}.
\frac{2}{5}x^{2}\times \frac{1}{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 1}{5\times 2}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}+\frac{2\left(-1\right)}{5\times 2}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{-1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4\times 1}{5\times 2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{4}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{10}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{4\times 1}{5\times 2}.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{2}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Combine -\frac{1}{5}x and \frac{2}{5}x to get \frac{1}{5}x.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4\left(-1\right)}{5\times 2}
Multiply \frac{4}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{-4}{10}
Do the multiplications in the fraction \frac{4\left(-1\right)}{5\times 2}.
\frac{1}{5}x^{2}+\frac{1}{5}x-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
\frac{2}{5}x\times \frac{1}{2}x+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{2}{5}x+\frac{4}{5} by each term of \frac{1}{2}x-\frac{1}{2}.
\frac{2}{5}x^{2}\times \frac{1}{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 1}{5\times 2}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}+\frac{2\left(-1\right)}{5\times 2}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{-1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4\times 1}{5\times 2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{4}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{10}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{4\times 1}{5\times 2}.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{2}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Combine -\frac{1}{5}x and \frac{2}{5}x to get \frac{1}{5}x.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4\left(-1\right)}{5\times 2}
Multiply \frac{4}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{-4}{10}
Do the multiplications in the fraction \frac{4\left(-1\right)}{5\times 2}.
\frac{1}{5}x^{2}+\frac{1}{5}x-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}