Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{5}x\times \frac{1}{2}x+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{2}{5}x+\frac{4}{5} by each term of \frac{1}{2}x-\frac{1}{2}.
\frac{2}{5}x^{2}\times \frac{1}{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 1}{5\times 2}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}+\frac{2\left(-1\right)}{5\times 2}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{-1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4\times 1}{5\times 2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{4}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{10}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{4\times 1}{5\times 2}.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{2}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Combine -\frac{1}{5}x and \frac{2}{5}x to get \frac{1}{5}x.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4\left(-1\right)}{5\times 2}
Multiply \frac{4}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{-4}{10}
Do the multiplications in the fraction \frac{4\left(-1\right)}{5\times 2}.
\frac{1}{5}x^{2}+\frac{1}{5}x-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
\frac{2}{5}x\times \frac{1}{2}x+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{2}{5}x+\frac{4}{5} by each term of \frac{1}{2}x-\frac{1}{2}.
\frac{2}{5}x^{2}\times \frac{1}{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 1}{5\times 2}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{2}{5}x\left(-\frac{1}{2}\right)+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}+\frac{2\left(-1\right)}{5\times 2}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{2}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{-1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{5}\times \frac{1}{2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4\times 1}{5\times 2}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Multiply \frac{4}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{4}{10}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{4\times 1}{5\times 2}.
\frac{1}{5}x^{2}-\frac{1}{5}x+\frac{2}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4}{5}\left(-\frac{1}{2}\right)
Combine -\frac{1}{5}x and \frac{2}{5}x to get \frac{1}{5}x.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{4\left(-1\right)}{5\times 2}
Multiply \frac{4}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}+\frac{1}{5}x+\frac{-4}{10}
Do the multiplications in the fraction \frac{4\left(-1\right)}{5\times 2}.
\frac{1}{5}x^{2}+\frac{1}{5}x-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.