Evaluate
-\frac{139}{20}=-6.95
Factor
-\frac{139}{20} = -6\frac{19}{20} = -6.95
Share
Copied to clipboard
\frac{4}{10}-\frac{5}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{\frac{3}{5}}{\frac{1}{4}-\frac{1}{5}}\right)
Least common multiple of 5 and 2 is 10. Convert \frac{2}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{4-5}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{\frac{3}{5}}{\frac{1}{4}-\frac{1}{5}}\right)
Since \frac{4}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{\frac{3}{5}}{\frac{1}{4}-\frac{1}{5}}\right)
Subtract 5 from 4 to get -1.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{\frac{3}{5}}{\frac{5}{20}-\frac{4}{20}}\right)
Least common multiple of 4 and 5 is 20. Convert \frac{1}{4} and \frac{1}{5} to fractions with denominator 20.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{\frac{3}{5}}{\frac{5-4}{20}}\right)
Since \frac{5}{20} and \frac{4}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{\frac{3}{5}}{\frac{1}{20}}\right)
Subtract 4 from 5 to get 1.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{3}{5}\times 20\right)
Divide \frac{3}{5} by \frac{1}{20} by multiplying \frac{3}{5} by the reciprocal of \frac{1}{20}.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{3\times 20}{5}\right)
Express \frac{3}{5}\times 20 as a single fraction.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{60}{5}\right)
Multiply 3 and 20 to get 60.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-12\right)
Divide 60 by 5 to get 12.
-\frac{1}{10}+\frac{3}{5}\left(\frac{7}{12}-\frac{144}{12}\right)
Convert 12 to fraction \frac{144}{12}.
-\frac{1}{10}+\frac{3}{5}\times \frac{7-144}{12}
Since \frac{7}{12} and \frac{144}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{10}+\frac{3}{5}\left(-\frac{137}{12}\right)
Subtract 144 from 7 to get -137.
-\frac{1}{10}+\frac{3\left(-137\right)}{5\times 12}
Multiply \frac{3}{5} times -\frac{137}{12} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{10}+\frac{-411}{60}
Do the multiplications in the fraction \frac{3\left(-137\right)}{5\times 12}.
-\frac{1}{10}-\frac{137}{20}
Reduce the fraction \frac{-411}{60} to lowest terms by extracting and canceling out 3.
-\frac{2}{20}-\frac{137}{20}
Least common multiple of 10 and 20 is 20. Convert -\frac{1}{10} and \frac{137}{20} to fractions with denominator 20.
\frac{-2-137}{20}
Since -\frac{2}{20} and \frac{137}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{139}{20}
Subtract 137 from -2 to get -139.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}