Solve for a
a=\frac{16807b}{48600}
b\neq 0
Solve for b
b=\frac{48600a}{16807}
a\neq 0
Share
Copied to clipboard
\left(\frac{2}{5}\right)^{-3}\times \left(\frac{15}{7}\right)^{-5}b=a
Multiply both sides of the equation by b.
\frac{125}{8}\times \left(\frac{15}{7}\right)^{-5}b=a
Calculate \frac{2}{5} to the power of -3 and get \frac{125}{8}.
\frac{125}{8}\times \frac{16807}{759375}b=a
Calculate \frac{15}{7} to the power of -5 and get \frac{16807}{759375}.
\frac{16807}{48600}b=a
Multiply \frac{125}{8} and \frac{16807}{759375} to get \frac{16807}{48600}.
a=\frac{16807}{48600}b
Swap sides so that all variable terms are on the left hand side.
\left(\frac{2}{5}\right)^{-3}\times \left(\frac{15}{7}\right)^{-5}b=a
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
\frac{125}{8}\times \left(\frac{15}{7}\right)^{-5}b=a
Calculate \frac{2}{5} to the power of -3 and get \frac{125}{8}.
\frac{125}{8}\times \frac{16807}{759375}b=a
Calculate \frac{15}{7} to the power of -5 and get \frac{16807}{759375}.
\frac{16807}{48600}b=a
Multiply \frac{125}{8} and \frac{16807}{759375} to get \frac{16807}{48600}.
\frac{\frac{16807}{48600}b}{\frac{16807}{48600}}=\frac{a}{\frac{16807}{48600}}
Divide both sides of the equation by \frac{16807}{48600}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{a}{\frac{16807}{48600}}
Dividing by \frac{16807}{48600} undoes the multiplication by \frac{16807}{48600}.
b=\frac{48600a}{16807}
Divide a by \frac{16807}{48600} by multiplying a by the reciprocal of \frac{16807}{48600}.
b=\frac{48600a}{16807}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}