Evaluate
\frac{7}{5}=1.4
Factor
\frac{7}{5} = 1\frac{2}{5} = 1.4
Share
Copied to clipboard
\frac{\frac{2}{5}\left(-2\right)}{\frac{4}{-7}}
Divide \frac{\frac{2}{5}}{\frac{4}{-7}} by \frac{1}{-2} by multiplying \frac{\frac{2}{5}}{\frac{4}{-7}} by the reciprocal of \frac{1}{-2}.
\frac{\frac{2\left(-2\right)}{5}}{\frac{4}{-7}}
Express \frac{2}{5}\left(-2\right) as a single fraction.
\frac{\frac{-4}{5}}{\frac{4}{-7}}
Multiply 2 and -2 to get -4.
\frac{-\frac{4}{5}}{\frac{4}{-7}}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
\frac{-\frac{4}{5}}{-\frac{4}{7}}
Fraction \frac{4}{-7} can be rewritten as -\frac{4}{7} by extracting the negative sign.
-\frac{4}{5}\left(-\frac{7}{4}\right)
Divide -\frac{4}{5} by -\frac{4}{7} by multiplying -\frac{4}{5} by the reciprocal of -\frac{4}{7}.
\frac{-4\left(-7\right)}{5\times 4}
Multiply -\frac{4}{5} times -\frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{20}
Do the multiplications in the fraction \frac{-4\left(-7\right)}{5\times 4}.
\frac{7}{5}
Reduce the fraction \frac{28}{20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}