Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{9}y^{2}+\frac{28}{9}y+\frac{49}{9}+y^{2}=52
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{2}{3}y+\frac{7}{3}\right)^{2}.
\frac{13}{9}y^{2}+\frac{28}{9}y+\frac{49}{9}=52
Combine \frac{4}{9}y^{2} and y^{2} to get \frac{13}{9}y^{2}.
\frac{13}{9}y^{2}+\frac{28}{9}y+\frac{49}{9}-52=0
Subtract 52 from both sides.
\frac{13}{9}y^{2}+\frac{28}{9}y-\frac{419}{9}=0
Subtract 52 from \frac{49}{9} to get -\frac{419}{9}.
y=\frac{-\frac{28}{9}±\sqrt{\left(\frac{28}{9}\right)^{2}-4\times \frac{13}{9}\left(-\frac{419}{9}\right)}}{2\times \frac{13}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{9} for a, \frac{28}{9} for b, and -\frac{419}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{28}{9}±\sqrt{\frac{784}{81}-4\times \frac{13}{9}\left(-\frac{419}{9}\right)}}{2\times \frac{13}{9}}
Square \frac{28}{9} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{28}{9}±\sqrt{\frac{784}{81}-\frac{52}{9}\left(-\frac{419}{9}\right)}}{2\times \frac{13}{9}}
Multiply -4 times \frac{13}{9}.
y=\frac{-\frac{28}{9}±\sqrt{\frac{784+21788}{81}}}{2\times \frac{13}{9}}
Multiply -\frac{52}{9} times -\frac{419}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{28}{9}±\sqrt{\frac{836}{3}}}{2\times \frac{13}{9}}
Add \frac{784}{81} to \frac{21788}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{28}{9}±\frac{2\sqrt{627}}{3}}{2\times \frac{13}{9}}
Take the square root of \frac{836}{3}.
y=\frac{-\frac{28}{9}±\frac{2\sqrt{627}}{3}}{\frac{26}{9}}
Multiply 2 times \frac{13}{9}.
y=\frac{\frac{2\sqrt{627}}{3}-\frac{28}{9}}{\frac{26}{9}}
Now solve the equation y=\frac{-\frac{28}{9}±\frac{2\sqrt{627}}{3}}{\frac{26}{9}} when ± is plus. Add -\frac{28}{9} to \frac{2\sqrt{627}}{3}.
y=\frac{3\sqrt{627}-14}{13}
Divide -\frac{28}{9}+\frac{2\sqrt{627}}{3} by \frac{26}{9} by multiplying -\frac{28}{9}+\frac{2\sqrt{627}}{3} by the reciprocal of \frac{26}{9}.
y=\frac{-\frac{2\sqrt{627}}{3}-\frac{28}{9}}{\frac{26}{9}}
Now solve the equation y=\frac{-\frac{28}{9}±\frac{2\sqrt{627}}{3}}{\frac{26}{9}} when ± is minus. Subtract \frac{2\sqrt{627}}{3} from -\frac{28}{9}.
y=\frac{-3\sqrt{627}-14}{13}
Divide -\frac{28}{9}-\frac{2\sqrt{627}}{3} by \frac{26}{9} by multiplying -\frac{28}{9}-\frac{2\sqrt{627}}{3} by the reciprocal of \frac{26}{9}.
y=\frac{3\sqrt{627}-14}{13} y=\frac{-3\sqrt{627}-14}{13}
The equation is now solved.
\frac{4}{9}y^{2}+\frac{28}{9}y+\frac{49}{9}+y^{2}=52
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{2}{3}y+\frac{7}{3}\right)^{2}.
\frac{13}{9}y^{2}+\frac{28}{9}y+\frac{49}{9}=52
Combine \frac{4}{9}y^{2} and y^{2} to get \frac{13}{9}y^{2}.
\frac{13}{9}y^{2}+\frac{28}{9}y=52-\frac{49}{9}
Subtract \frac{49}{9} from both sides.
\frac{13}{9}y^{2}+\frac{28}{9}y=\frac{419}{9}
Subtract \frac{49}{9} from 52 to get \frac{419}{9}.
\frac{\frac{13}{9}y^{2}+\frac{28}{9}y}{\frac{13}{9}}=\frac{\frac{419}{9}}{\frac{13}{9}}
Divide both sides of the equation by \frac{13}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\frac{\frac{28}{9}}{\frac{13}{9}}y=\frac{\frac{419}{9}}{\frac{13}{9}}
Dividing by \frac{13}{9} undoes the multiplication by \frac{13}{9}.
y^{2}+\frac{28}{13}y=\frac{\frac{419}{9}}{\frac{13}{9}}
Divide \frac{28}{9} by \frac{13}{9} by multiplying \frac{28}{9} by the reciprocal of \frac{13}{9}.
y^{2}+\frac{28}{13}y=\frac{419}{13}
Divide \frac{419}{9} by \frac{13}{9} by multiplying \frac{419}{9} by the reciprocal of \frac{13}{9}.
y^{2}+\frac{28}{13}y+\left(\frac{14}{13}\right)^{2}=\frac{419}{13}+\left(\frac{14}{13}\right)^{2}
Divide \frac{28}{13}, the coefficient of the x term, by 2 to get \frac{14}{13}. Then add the square of \frac{14}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{28}{13}y+\frac{196}{169}=\frac{419}{13}+\frac{196}{169}
Square \frac{14}{13} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{28}{13}y+\frac{196}{169}=\frac{5643}{169}
Add \frac{419}{13} to \frac{196}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{14}{13}\right)^{2}=\frac{5643}{169}
Factor y^{2}+\frac{28}{13}y+\frac{196}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{14}{13}\right)^{2}}=\sqrt{\frac{5643}{169}}
Take the square root of both sides of the equation.
y+\frac{14}{13}=\frac{3\sqrt{627}}{13} y+\frac{14}{13}=-\frac{3\sqrt{627}}{13}
Simplify.
y=\frac{3\sqrt{627}-14}{13} y=\frac{-3\sqrt{627}-14}{13}
Subtract \frac{14}{13} from both sides of the equation.