Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}
Use the distributive property to multiply \frac{2}{3}a-\frac{1}{3}b+1 by \frac{1}{2}a-\frac{3}{4}b and combine like terms.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}a^{2}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}a^{2}}
Factor the expressions that are not already factored in \frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}}
Cancel out a^{2} in both numerator and denominator.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{1}{4}\left(4a^{2}-2ab-3b\right)
Divide \frac{1}{6}\left(4a^{2}-2ab-3b\right) by \frac{2}{3} to get \frac{1}{4}\left(4a^{2}-2ab-3b\right).
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\left(a^{2}-\frac{1}{2}ab-\frac{3}{4}b\right)
Use the distributive property to multiply \frac{1}{4} by 4a^{2}-2ab-3b.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-a^{2}+\frac{1}{2}ab+\frac{3}{4}b
To find the opposite of a^{2}-\frac{1}{2}ab-\frac{3}{4}b, find the opposite of each term.
-\frac{2}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{1}{2}ab+\frac{3}{4}b
Combine \frac{1}{3}a^{2} and -a^{2} to get -\frac{2}{3}a^{2}.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{3}{4}b
Combine -\frac{2}{3}ab and \frac{1}{2}ab to get -\frac{1}{6}ab.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a
Combine -\frac{3}{4}b and \frac{3}{4}b to get 0.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}
Use the distributive property to multiply \frac{2}{3}a-\frac{1}{3}b+1 by \frac{1}{2}a-\frac{3}{4}b and combine like terms.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}a^{2}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}a^{2}}
Factor the expressions that are not already factored in \frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}}
Cancel out a^{2} in both numerator and denominator.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{1}{4}\left(4a^{2}-2ab-3b\right)
Divide \frac{1}{6}\left(4a^{2}-2ab-3b\right) by \frac{2}{3} to get \frac{1}{4}\left(4a^{2}-2ab-3b\right).
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\left(a^{2}-\frac{1}{2}ab-\frac{3}{4}b\right)
Use the distributive property to multiply \frac{1}{4} by 4a^{2}-2ab-3b.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-a^{2}+\frac{1}{2}ab+\frac{3}{4}b
To find the opposite of a^{2}-\frac{1}{2}ab-\frac{3}{4}b, find the opposite of each term.
-\frac{2}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{1}{2}ab+\frac{3}{4}b
Combine \frac{1}{3}a^{2} and -a^{2} to get -\frac{2}{3}a^{2}.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{3}{4}b
Combine -\frac{2}{3}ab and \frac{1}{2}ab to get -\frac{1}{6}ab.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a
Combine -\frac{3}{4}b and \frac{3}{4}b to get 0.