Evaluate
-\frac{ab}{6}+\frac{b^{2}}{4}-\frac{2a^{2}}{3}+\frac{a}{2}
Expand
-\frac{ab}{6}+\frac{b^{2}}{4}-\frac{2a^{2}}{3}+\frac{a}{2}
Share
Copied to clipboard
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}
Use the distributive property to multiply \frac{2}{3}a-\frac{1}{3}b+1 by \frac{1}{2}a-\frac{3}{4}b and combine like terms.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}a^{2}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}a^{2}}
Factor the expressions that are not already factored in \frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}}
Cancel out a^{2} in both numerator and denominator.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{1}{4}\left(4a^{2}-2ab-3b\right)
Divide \frac{1}{6}\left(4a^{2}-2ab-3b\right) by \frac{2}{3} to get \frac{1}{4}\left(4a^{2}-2ab-3b\right).
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\left(a^{2}-\frac{1}{2}ab-\frac{3}{4}b\right)
Use the distributive property to multiply \frac{1}{4} by 4a^{2}-2ab-3b.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-a^{2}+\frac{1}{2}ab+\frac{3}{4}b
To find the opposite of a^{2}-\frac{1}{2}ab-\frac{3}{4}b, find the opposite of each term.
-\frac{2}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{1}{2}ab+\frac{3}{4}b
Combine \frac{1}{3}a^{2} and -a^{2} to get -\frac{2}{3}a^{2}.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{3}{4}b
Combine -\frac{2}{3}ab and \frac{1}{2}ab to get -\frac{1}{6}ab.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a
Combine -\frac{3}{4}b and \frac{3}{4}b to get 0.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}
Use the distributive property to multiply \frac{2}{3}a-\frac{1}{3}b+1 by \frac{1}{2}a-\frac{3}{4}b and combine like terms.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}a^{2}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}a^{2}}
Factor the expressions that are not already factored in \frac{\frac{2}{3}a^{4}-\frac{1}{3}a^{3}b-\frac{1}{2}a^{2}b}{\frac{2}{3}a^{2}}.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{\frac{1}{6}\left(4a^{2}-2ab-3b\right)}{\frac{2}{3}}
Cancel out a^{2} in both numerator and denominator.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\frac{1}{4}\left(4a^{2}-2ab-3b\right)
Divide \frac{1}{6}\left(4a^{2}-2ab-3b\right) by \frac{2}{3} to get \frac{1}{4}\left(4a^{2}-2ab-3b\right).
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-\left(a^{2}-\frac{1}{2}ab-\frac{3}{4}b\right)
Use the distributive property to multiply \frac{1}{4} by 4a^{2}-2ab-3b.
\frac{1}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b-a^{2}+\frac{1}{2}ab+\frac{3}{4}b
To find the opposite of a^{2}-\frac{1}{2}ab-\frac{3}{4}b, find the opposite of each term.
-\frac{2}{3}a^{2}-\frac{2}{3}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{1}{2}ab+\frac{3}{4}b
Combine \frac{1}{3}a^{2} and -a^{2} to get -\frac{2}{3}a^{2}.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a-\frac{3}{4}b+\frac{3}{4}b
Combine -\frac{2}{3}ab and \frac{1}{2}ab to get -\frac{1}{6}ab.
-\frac{2}{3}a^{2}-\frac{1}{6}ab+\frac{1}{4}b^{2}+\frac{1}{2}a
Combine -\frac{3}{4}b and \frac{3}{4}b to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}