Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\frac{2}{3}-\frac{1}{6}+\frac{1}{3}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{4}{6}-\frac{1}{6}+\frac{1}{3}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{4-1}{6}+\frac{1}{3}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Since \frac{4}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{6}+\frac{1}{3}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Subtract 1 from 4 to get 3.
\frac{1}{2}+\frac{1}{3}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{3}{6}+\frac{2}{6}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3+2}{6}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Add 3 and 2 to get 5.
\frac{10}{12}-\frac{1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Least common multiple of 6 and 12 is 12. Convert \frac{5}{6} and \frac{1}{12} to fractions with denominator 12.
\frac{10-1}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Since \frac{10}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{12}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Subtract 1 from 10 to get 9.
\frac{3}{4}=\frac{3}{5}x\times \frac{\frac{3}{2}\times 2\times \frac{5}{3}}{2}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{3}{4}=\frac{3}{5}x\times \frac{3}{2}\times \frac{5}{3}
Cancel out 2 and 2.
\frac{3}{4}=\frac{3}{5}x\times \frac{3\times 5}{2\times 3}
Multiply \frac{3}{2} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}=\frac{3}{5}x\times \frac{5}{2}
Cancel out 3 in both numerator and denominator.
\frac{3}{4}=\frac{3\times 5}{5\times 2}x
Multiply \frac{3}{5} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}=\frac{3}{2}x
Cancel out 5 in both numerator and denominator.
\frac{3}{2}x=\frac{3}{4}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3}{4}\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
x=\frac{3\times 2}{4\times 3}
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{2}{4}
Cancel out 3 in both numerator and denominator.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}