Evaluate
\frac{41}{24}\approx 1.708333333
Factor
\frac{41}{2 ^ {3} \cdot 3} = 1\frac{17}{24} = 1.7083333333333333
Share
Copied to clipboard
\left(\frac{10}{15}-\frac{3}{15}\right)\times \frac{5}{7}+\frac{1\times 8+3}{8}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{10-3}{15}\times \frac{5}{7}+\frac{1\times 8+3}{8}
Since \frac{10}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{15}\times \frac{5}{7}+\frac{1\times 8+3}{8}
Subtract 3 from 10 to get 7.
\frac{7\times 5}{15\times 7}+\frac{1\times 8+3}{8}
Multiply \frac{7}{15} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{15}+\frac{1\times 8+3}{8}
Cancel out 7 in both numerator and denominator.
\frac{1}{3}+\frac{1\times 8+3}{8}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\frac{1}{3}+\frac{8+3}{8}
Multiply 1 and 8 to get 8.
\frac{1}{3}+\frac{11}{8}
Add 8 and 3 to get 11.
\frac{8}{24}+\frac{33}{24}
Least common multiple of 3 and 8 is 24. Convert \frac{1}{3} and \frac{11}{8} to fractions with denominator 24.
\frac{8+33}{24}
Since \frac{8}{24} and \frac{33}{24} have the same denominator, add them by adding their numerators.
\frac{41}{24}
Add 8 and 33 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}