( \frac { 2 } { 3 } ( \frac { 7 } { 8 } - \frac { x } { 4 } ) - \frac { 3 } { 8 } = \frac { 5 } { 8 } )
Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
16\left(\frac{7}{8}-\frac{x}{4}\right)-9=15
Multiply both sides of the equation by 24, the least common multiple of 3,8,4.
16\left(\frac{7}{8}-\frac{2x}{8}\right)-9=15
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 4 is 8. Multiply \frac{x}{4} times \frac{2}{2}.
16\times \frac{7-2x}{8}-9=15
Since \frac{7}{8} and \frac{2x}{8} have the same denominator, subtract them by subtracting their numerators.
2\left(7-2x\right)-9=15
Cancel out 8, the greatest common factor in 16 and 8.
14-4x-9=15
Use the distributive property to multiply 2 by 7-2x.
5-4x=15
Subtract 9 from 14 to get 5.
-4x=15-5
Subtract 5 from both sides.
-4x=10
Subtract 5 from 15 to get 10.
x=\frac{10}{-4}
Divide both sides by -4.
x=-\frac{5}{2}
Reduce the fraction \frac{10}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}