Evaluate
-\frac{27}{40}=-0.675
Factor
-\frac{27}{40} = -0.675
Share
Copied to clipboard
\frac{\frac{4}{6}+\frac{5}{6}}{\frac{4}{9}-\frac{8}{3}}
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{\frac{4+5}{6}}{\frac{4}{9}-\frac{8}{3}}
Since \frac{4}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{6}}{\frac{4}{9}-\frac{8}{3}}
Add 4 and 5 to get 9.
\frac{\frac{3}{2}}{\frac{4}{9}-\frac{8}{3}}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{3}{2}}{\frac{4}{9}-\frac{24}{9}}
Least common multiple of 9 and 3 is 9. Convert \frac{4}{9} and \frac{8}{3} to fractions with denominator 9.
\frac{\frac{3}{2}}{\frac{4-24}{9}}
Since \frac{4}{9} and \frac{24}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{2}}{-\frac{20}{9}}
Subtract 24 from 4 to get -20.
\frac{3}{2}\left(-\frac{9}{20}\right)
Divide \frac{3}{2} by -\frac{20}{9} by multiplying \frac{3}{2} by the reciprocal of -\frac{20}{9}.
\frac{3\left(-9\right)}{2\times 20}
Multiply \frac{3}{2} times -\frac{9}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{-27}{40}
Do the multiplications in the fraction \frac{3\left(-9\right)}{2\times 20}.
-\frac{27}{40}
Fraction \frac{-27}{40} can be rewritten as -\frac{27}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}