Evaluate
Still have questions?
\left(\frac{2}{3}+\frac{2}{3}\right)^{2}\times \left(\frac{6^{2}}{12^{2}}\right)\approx 0.444444444
Reduce the fraction \frac{4}{6}\approx 0.666666667 to lowest terms by extracting and canceling out 2.
\left(\frac{4}{3}\right)^{2}\times \left(\frac{6^{2}}{12^{2}}\right)\approx 0.444444444
Add \frac{2}{3}\approx 0.666666667 and \frac{2}{3}\approx 0.666666667 to get \frac{4}{3}\approx 1.333333333.
\frac{16}{9}\times \left(\frac{6^{2}}{12^{2}}\right)\approx 0.444444444
Calculate \frac{4}{3}\approx 1.333333333 to the power of 2 and get \frac{16}{9}\approx 1.777777778.
\frac{16}{9}\times \left(\frac{36}{12^{2}}\right)\approx 0.444444444
Calculate 6 to the power of 2 and get 36.
\frac{16}{9}\times \left(\frac{36}{144}\right)\approx 0.444444444
Calculate 12 to the power of 2 and get 144.
\frac{16}{9}\times \left(\frac{1}{4}\right)\approx 0.444444444
Reduce the fraction \frac{36}{144}=0.25 to lowest terms by extracting and canceling out 36.
\frac{4}{9}\approx 0.444444444
Multiply \frac{16}{9}\approx 1.777777778 and \frac{1}{4}=0.25 to get \frac{4}{9}\approx 0.444444444.