Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
2-3\times \frac{-1}{2}+2\times \frac{0}{-2}
Anything divided by one gives itself.
2-3\left(-\frac{1}{2}\right)+2\times \frac{0}{-2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
2-\frac{3\left(-1\right)}{2}+2\times \frac{0}{-2}
Express 3\left(-\frac{1}{2}\right) as a single fraction.
2-\frac{-3}{2}+2\times \frac{0}{-2}
Multiply 3 and -1 to get -3.
2-\left(-\frac{3}{2}\right)+2\times \frac{0}{-2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
2+\frac{3}{2}+2\times \frac{0}{-2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{4}{2}+\frac{3}{2}+2\times \frac{0}{-2}
Convert 2 to fraction \frac{4}{2}.
\frac{4+3}{2}+2\times \frac{0}{-2}
Since \frac{4}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{7}{2}+2\times \frac{0}{-2}
Add 4 and 3 to get 7.
\frac{7}{2}+2\times 0
Zero divided by any non-zero number gives zero.
\frac{7}{2}+0
Multiply 2 and 0 to get 0.
\frac{7}{2}
Add \frac{7}{2} and 0 to get \frac{7}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}