Evaluate
-\sqrt{3}-7\sqrt{2}\approx -11.631545744
Share
Copied to clipboard
\left(\frac{2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{3}{\sqrt{3}}\right)\left(\sqrt{3}+7\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Rationalize the denominator of \frac{2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{2\sqrt{2}}{2}+\frac{3}{\sqrt{3}}\right)\left(\sqrt{3}+7\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
The square of \sqrt{2} is 2.
\left(\sqrt{2}+\frac{3}{\sqrt{3}}\right)\left(\sqrt{3}+7\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Cancel out 2 and 2.
\left(\sqrt{2}+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\left(\sqrt{3}+7\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\sqrt{2}+\frac{3\sqrt{3}}{3}\right)\left(\sqrt{3}+7\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
The square of \sqrt{3} is 3.
\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}+7\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Cancel out 3 and 3.
\left(\sqrt{2}\sqrt{3}+7\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+7\sqrt{3}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Apply the distributive property by multiplying each term of \sqrt{2}+\sqrt{3} by each term of \sqrt{3}+7\sqrt{2}.
\left(\sqrt{6}+7\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+7\sqrt{3}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(\sqrt{6}+7\times 2+\left(\sqrt{3}\right)^{2}+7\sqrt{3}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
The square of \sqrt{2} is 2.
\left(\sqrt{6}+14+\left(\sqrt{3}\right)^{2}+7\sqrt{3}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Multiply 7 and 2 to get 14.
\left(\sqrt{6}+14+3+7\sqrt{3}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
The square of \sqrt{3} is 3.
\left(\sqrt{6}+17+7\sqrt{3}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)
Add 14 and 3 to get 17.
\left(\sqrt{6}+17+7\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(8\sqrt{6}+17\right)\left(\sqrt{2}-\sqrt{3}\right)
Combine \sqrt{6} and 7\sqrt{6} to get 8\sqrt{6}.
8\sqrt{6}\sqrt{2}-8\sqrt{3}\sqrt{6}+17\sqrt{2}-17\sqrt{3}
Apply the distributive property by multiplying each term of 8\sqrt{6}+17 by each term of \sqrt{2}-\sqrt{3}.
8\sqrt{2}\sqrt{3}\sqrt{2}-8\sqrt{3}\sqrt{6}+17\sqrt{2}-17\sqrt{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
8\times 2\sqrt{3}-8\sqrt{3}\sqrt{6}+17\sqrt{2}-17\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
16\sqrt{3}-8\sqrt{3}\sqrt{6}+17\sqrt{2}-17\sqrt{3}
Multiply 8 and 2 to get 16.
16\sqrt{3}-8\sqrt{3}\sqrt{3}\sqrt{2}+17\sqrt{2}-17\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
16\sqrt{3}-8\times 3\sqrt{2}+17\sqrt{2}-17\sqrt{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
16\sqrt{3}-24\sqrt{2}+17\sqrt{2}-17\sqrt{3}
Multiply -8 and 3 to get -24.
16\sqrt{3}-7\sqrt{2}-17\sqrt{3}
Combine -24\sqrt{2} and 17\sqrt{2} to get -7\sqrt{2}.
-\sqrt{3}-7\sqrt{2}
Combine 16\sqrt{3} and -17\sqrt{3} to get -\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}