Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{2\left(\sqrt{19}-\sqrt{17}\right)}{\left(\sqrt{19}+\sqrt{17}\right)\left(\sqrt{19}-\sqrt{17}\right)}+\frac{2}{\sqrt{17}+\sqrt{15}}+\sqrt{15}-\sqrt{19}
Rationalize the denominator of \frac{2}{\sqrt{19}+\sqrt{17}} by multiplying numerator and denominator by \sqrt{19}-\sqrt{17}.
\frac{2\left(\sqrt{19}-\sqrt{17}\right)}{\left(\sqrt{19}\right)^{2}-\left(\sqrt{17}\right)^{2}}+\frac{2}{\sqrt{17}+\sqrt{15}}+\sqrt{15}-\sqrt{19}
Consider \left(\sqrt{19}+\sqrt{17}\right)\left(\sqrt{19}-\sqrt{17}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{19}-\sqrt{17}\right)}{19-17}+\frac{2}{\sqrt{17}+\sqrt{15}}+\sqrt{15}-\sqrt{19}
Square \sqrt{19}. Square \sqrt{17}.
\frac{2\left(\sqrt{19}-\sqrt{17}\right)}{2}+\frac{2}{\sqrt{17}+\sqrt{15}}+\sqrt{15}-\sqrt{19}
Subtract 17 from 19 to get 2.
\sqrt{19}-\sqrt{17}+\frac{2}{\sqrt{17}+\sqrt{15}}+\sqrt{15}-\sqrt{19}
Cancel out 2 and 2.
\sqrt{19}-\sqrt{17}+\frac{2\left(\sqrt{17}-\sqrt{15}\right)}{\left(\sqrt{17}+\sqrt{15}\right)\left(\sqrt{17}-\sqrt{15}\right)}+\sqrt{15}-\sqrt{19}
Rationalize the denominator of \frac{2}{\sqrt{17}+\sqrt{15}} by multiplying numerator and denominator by \sqrt{17}-\sqrt{15}.
\sqrt{19}-\sqrt{17}+\frac{2\left(\sqrt{17}-\sqrt{15}\right)}{\left(\sqrt{17}\right)^{2}-\left(\sqrt{15}\right)^{2}}+\sqrt{15}-\sqrt{19}
Consider \left(\sqrt{17}+\sqrt{15}\right)\left(\sqrt{17}-\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{19}-\sqrt{17}+\frac{2\left(\sqrt{17}-\sqrt{15}\right)}{17-15}+\sqrt{15}-\sqrt{19}
Square \sqrt{17}. Square \sqrt{15}.
\sqrt{19}-\sqrt{17}+\frac{2\left(\sqrt{17}-\sqrt{15}\right)}{2}+\sqrt{15}-\sqrt{19}
Subtract 15 from 17 to get 2.
\sqrt{19}-\sqrt{17}+\sqrt{17}-\sqrt{15}+\sqrt{15}-\sqrt{19}
Cancel out 2 and 2.
\sqrt{19}-\sqrt{15}+\sqrt{15}-\sqrt{19}
Combine -\sqrt{17} and \sqrt{17} to get 0.
\sqrt{19}-\sqrt{19}
Combine -\sqrt{15} and \sqrt{15} to get 0.
0
Combine \sqrt{19} and -\sqrt{19} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}