Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}\right)^{2}
Rationalize the denominator of \frac{2}{\sqrt{10}+3} by multiplying numerator and denominator by \sqrt{10}-3.
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}\right)^{2}
Consider \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2\left(\sqrt{10}-3\right)}{10-9}\right)^{2}
Square \sqrt{10}. Square 3.
\left(\frac{2\left(\sqrt{10}-3\right)}{1}\right)^{2}
Subtract 9 from 10 to get 1.
\left(2\left(\sqrt{10}-3\right)\right)^{2}
Anything divided by one gives itself.
\left(2\sqrt{10}-6\right)^{2}
Use the distributive property to multiply 2 by \sqrt{10}-3.
4\left(\sqrt{10}\right)^{2}-24\sqrt{10}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{10}-6\right)^{2}.
4\times 10-24\sqrt{10}+36
The square of \sqrt{10} is 10.
40-24\sqrt{10}+36
Multiply 4 and 10 to get 40.
76-24\sqrt{10}
Add 40 and 36 to get 76.
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}\right)^{2}
Rationalize the denominator of \frac{2}{\sqrt{10}+3} by multiplying numerator and denominator by \sqrt{10}-3.
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}\right)^{2}
Consider \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2\left(\sqrt{10}-3\right)}{10-9}\right)^{2}
Square \sqrt{10}. Square 3.
\left(\frac{2\left(\sqrt{10}-3\right)}{1}\right)^{2}
Subtract 9 from 10 to get 1.
\left(2\left(\sqrt{10}-3\right)\right)^{2}
Anything divided by one gives itself.
\left(2\sqrt{10}-6\right)^{2}
Use the distributive property to multiply 2 by \sqrt{10}-3.
4\left(\sqrt{10}\right)^{2}-24\sqrt{10}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{10}-6\right)^{2}.
4\times 10-24\sqrt{10}+36
The square of \sqrt{10} is 10.
40-24\sqrt{10}+36
Multiply 4 and 10 to get 40.
76-24\sqrt{10}
Add 40 and 36 to get 76.