Evaluate
76-24\sqrt{10}\approx 0.105336156
Expand
76-24\sqrt{10}
Share
Copied to clipboard
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}\right)^{2}
Rationalize the denominator of \frac{2}{\sqrt{10}+3} by multiplying numerator and denominator by \sqrt{10}-3.
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}\right)^{2}
Consider \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2\left(\sqrt{10}-3\right)}{10-9}\right)^{2}
Square \sqrt{10}. Square 3.
\left(\frac{2\left(\sqrt{10}-3\right)}{1}\right)^{2}
Subtract 9 from 10 to get 1.
\left(2\left(\sqrt{10}-3\right)\right)^{2}
Anything divided by one gives itself.
\left(2\sqrt{10}-6\right)^{2}
Use the distributive property to multiply 2 by \sqrt{10}-3.
4\left(\sqrt{10}\right)^{2}-24\sqrt{10}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{10}-6\right)^{2}.
4\times 10-24\sqrt{10}+36
The square of \sqrt{10} is 10.
40-24\sqrt{10}+36
Multiply 4 and 10 to get 40.
76-24\sqrt{10}
Add 40 and 36 to get 76.
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}\right)^{2}
Rationalize the denominator of \frac{2}{\sqrt{10}+3} by multiplying numerator and denominator by \sqrt{10}-3.
\left(\frac{2\left(\sqrt{10}-3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}\right)^{2}
Consider \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2\left(\sqrt{10}-3\right)}{10-9}\right)^{2}
Square \sqrt{10}. Square 3.
\left(\frac{2\left(\sqrt{10}-3\right)}{1}\right)^{2}
Subtract 9 from 10 to get 1.
\left(2\left(\sqrt{10}-3\right)\right)^{2}
Anything divided by one gives itself.
\left(2\sqrt{10}-6\right)^{2}
Use the distributive property to multiply 2 by \sqrt{10}-3.
4\left(\sqrt{10}\right)^{2}-24\sqrt{10}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{10}-6\right)^{2}.
4\times 10-24\sqrt{10}+36
The square of \sqrt{10} is 10.
40-24\sqrt{10}+36
Multiply 4 and 10 to get 40.
76-24\sqrt{10}
Add 40 and 36 to get 76.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}