Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
Rationalize the denominator of \frac{2\sqrt{3}+\sqrt{2}}{3\sqrt{2}-\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}+\sqrt{3}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
Consider \left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
Calculate 3 to the power of 2 and get 9.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{9\times 2-\left(\sqrt{3}\right)^{2}}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
The square of \sqrt{2} is 2.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{18-\left(\sqrt{3}\right)^{2}}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
Multiply 9 and 2 to get 18.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{18-3}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
The square of \sqrt{3} is 3.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}}{\frac{19}{4\sqrt{6}+1}}
Subtract 3 from 18 to get 15.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}}{\frac{19}{4\sqrt{6}+1}}
Rationalize the denominator of \frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}+3\sqrt{2}} by multiplying numerator and denominator by 4\sqrt{3}-3\sqrt{2}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
Consider \left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
Calculate 4 to the power of 2 and get 16.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\times 3-\left(3\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
The square of \sqrt{3} is 3.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-\left(3\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
Multiply 16 and 3 to get 48.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-3^{2}\left(\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}}{\frac{19}{4\sqrt{6}+1}}
Calculate 3 to the power of 2 and get 9.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\times 2}}{\frac{19}{4\sqrt{6}+1}}
The square of \sqrt{2} is 2.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-18}}{\frac{19}{4\sqrt{6}+1}}
Multiply 9 and 2 to get 18.
\frac{\frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30}}{\frac{19}{4\sqrt{6}+1}}
Subtract 18 from 48 to get 30.
\frac{\frac{2\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{30}-\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30}}{\frac{19}{4\sqrt{6}+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 30 is 30. Multiply \frac{\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{15} times \frac{2}{2}.
\frac{\frac{2\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)-\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30}}{\frac{19}{4\sqrt{6}+1}}
Since \frac{2\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)}{30} and \frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12\sqrt{6}+12+12+2\sqrt{6}-24+6\sqrt{6}+4\sqrt{6}-6}{30}}{\frac{19}{4\sqrt{6}+1}}
Do the multiplications in 2\left(2\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{2}+\sqrt{3}\right)-\left(2\sqrt{3}-\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right).
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19}{4\sqrt{6}+1}}
Do the calculations in 12\sqrt{6}+12+12+2\sqrt{6}-24+6\sqrt{6}+4\sqrt{6}-6.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{\left(4\sqrt{6}+1\right)\left(4\sqrt{6}-1\right)}}
Rationalize the denominator of \frac{19}{4\sqrt{6}+1} by multiplying numerator and denominator by 4\sqrt{6}-1.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{\left(4\sqrt{6}\right)^{2}-1^{2}}}
Consider \left(4\sqrt{6}+1\right)\left(4\sqrt{6}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{4^{2}\left(\sqrt{6}\right)^{2}-1^{2}}}
Expand \left(4\sqrt{6}\right)^{2}.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{16\left(\sqrt{6}\right)^{2}-1^{2}}}
Calculate 4 to the power of 2 and get 16.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{16\times 6-1^{2}}}
The square of \sqrt{6} is 6.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{96-1^{2}}}
Multiply 16 and 6 to get 96.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{96-1}}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{19\left(4\sqrt{6}-1\right)}{95}}
Subtract 1 from 96 to get 95.
\frac{\frac{24\sqrt{6}-6}{30}}{\frac{1}{5}\left(4\sqrt{6}-1\right)}
Divide 19\left(4\sqrt{6}-1\right) by 95 to get \frac{1}{5}\left(4\sqrt{6}-1\right).
\frac{24\sqrt{6}-6}{30\times \frac{1}{5}\left(4\sqrt{6}-1\right)}
Express \frac{\frac{24\sqrt{6}-6}{30}}{\frac{1}{5}\left(4\sqrt{6}-1\right)} as a single fraction.
\frac{24\sqrt{6}-6}{\frac{30}{5}\left(4\sqrt{6}-1\right)}
Multiply 30 and \frac{1}{5} to get \frac{30}{5}.
\frac{24\sqrt{6}-6}{6\left(4\sqrt{6}-1\right)}
Divide 30 by 5 to get 6.
\frac{24\sqrt{6}-6}{24\sqrt{6}-6}
Use the distributive property to multiply 6 by 4\sqrt{6}-1.
1
Cancel out 24\sqrt{6}-6 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}