Solve for m (complex solution)
m\in \mathrm{C}
Solve for m
m\in \mathrm{R}
Share
Copied to clipboard
\left(\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+\left(4-\frac{2\sqrt{2}-m}{\sqrt{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{2\sqrt{2}-m}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}+\left(4-\frac{2\sqrt{2}-m}{\sqrt{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\left(4-\frac{2\sqrt{2}-m}{\sqrt{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
To raise \frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\left(4-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{2\sqrt{2}-m}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\left(4-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{2\left(\sqrt{2}\right)^{2}-m\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use the distributive property to multiply 2\sqrt{2}-m by \sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{2\times 2-m\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{4-m\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16-4\left(4-m\sqrt{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Cancel out 2, the greatest common factor in 8 and 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16-16+4\sqrt{2}m+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use the distributive property to multiply -4 by 4-m\sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Subtract 16 from 16 to get 0.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{2\left(\sqrt{2}\right)^{2}-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use the distributive property to multiply 2\sqrt{2}-m by \sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{2\times 2-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{4-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(\frac{4-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Calculate -\frac{4-m\sqrt{2}}{2} to the power of 2 and get \left(\frac{4-m\sqrt{2}}{2}\right)^{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
To raise \frac{4-m\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\sqrt{2}m\times 2^{2}}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{2}m times \frac{2^{2}}{2^{2}}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}+4\sqrt{2}m\times 2^{2}}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Since \frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}} and \frac{4\sqrt{2}m\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{16-8m\sqrt{2}+2m^{2}+16\sqrt{2}m}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Do the multiplications in \left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}+4\sqrt{2}m\times 2^{2}.
\frac{16+8m\sqrt{2}+2m^{2}}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Combine like terms in 16-8m\sqrt{2}+2m^{2}+16\sqrt{2}m.
\frac{2\left(m^{2}+4\sqrt{2}m+8\right)}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Factor the expressions that are not already factored in \frac{16+8m\sqrt{2}+2m^{2}}{2^{2}}.
\frac{m^{2}+4\sqrt{2}m+8}{2}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Cancel out 2 in both numerator and denominator.
\frac{2\left(m^{2}+4\sqrt{2}m+8\right)}{4}+\frac{\left(4-m\sqrt{2}\right)^{2}}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2^{2} is 4. Multiply \frac{m^{2}+4\sqrt{2}m+8}{2} times \frac{2}{2}.
\frac{2\left(m^{2}+4\sqrt{2}m+8\right)+\left(4-m\sqrt{2}\right)^{2}}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
Since \frac{2\left(m^{2}+4\sqrt{2}m+8\right)}{4} and \frac{\left(4-m\sqrt{2}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{2m^{2}+8\sqrt{2}m+16+16-8m\sqrt{2}+2m^{2}}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
Do the multiplications in 2\left(m^{2}+4\sqrt{2}m+8\right)+\left(4-m\sqrt{2}\right)^{2}.
\frac{4m^{2}+32}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
Combine like terms in 2m^{2}+8\sqrt{2}m+16+16-8m\sqrt{2}+2m^{2}.
m^{2}+8=m^{2}+\left(2\sqrt{2}\right)^{2}
Divide each term of 4m^{2}+32 by 4 to get m^{2}+8.
m^{2}+8=m^{2}+2^{2}\left(\sqrt{2}\right)^{2}
Expand \left(2\sqrt{2}\right)^{2}.
m^{2}+8=m^{2}+4\left(\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
m^{2}+8=m^{2}+4\times 2
The square of \sqrt{2} is 2.
m^{2}+8=m^{2}+8
Multiply 4 and 2 to get 8.
m^{2}+8-m^{2}=8
Subtract m^{2} from both sides.
8=8
Combine m^{2} and -m^{2} to get 0.
\text{true}
Compare 8 and 8.
m\in \mathrm{C}
This is true for any m.
\left(\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+\left(4-\frac{2\sqrt{2}-m}{\sqrt{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{2\sqrt{2}-m}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}+\left(4-\frac{2\sqrt{2}-m}{\sqrt{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\left(4-\frac{2\sqrt{2}-m}{\sqrt{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
To raise \frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\left(4-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{2\sqrt{2}-m}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\left(4-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{2\left(\sqrt{2}\right)^{2}-m\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use the distributive property to multiply 2\sqrt{2}-m by \sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{2\times 2-m\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16+8\left(-\frac{4-m\sqrt{2}}{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16-4\left(4-m\sqrt{2}\right)+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Cancel out 2, the greatest common factor in 8 and 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+16-16+4\sqrt{2}m+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use the distributive property to multiply -4 by 4-m\sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{\left(2\sqrt{2}-m\right)\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Subtract 16 from 16 to get 0.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{2\left(\sqrt{2}\right)^{2}-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Use the distributive property to multiply 2\sqrt{2}-m by \sqrt{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{2\times 2-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(-\frac{4-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\left(\frac{4-m\sqrt{2}}{2}\right)^{2}=m^{2}+\left(2\sqrt{2}\right)^{2}
Calculate -\frac{4-m\sqrt{2}}{2} to the power of 2 and get \left(\frac{4-m\sqrt{2}}{2}\right)^{2}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+4\sqrt{2}m+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
To raise \frac{4-m\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\sqrt{2}m\times 2^{2}}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{2}m times \frac{2^{2}}{2^{2}}.
\frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}+4\sqrt{2}m\times 2^{2}}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Since \frac{\left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}}{2^{2}} and \frac{4\sqrt{2}m\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{16-8m\sqrt{2}+2m^{2}+16\sqrt{2}m}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Do the multiplications in \left(\left(2\sqrt{2}-m\right)\sqrt{2}\right)^{2}+4\sqrt{2}m\times 2^{2}.
\frac{16+8m\sqrt{2}+2m^{2}}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Combine like terms in 16-8m\sqrt{2}+2m^{2}+16\sqrt{2}m.
\frac{2\left(m^{2}+4\sqrt{2}m+8\right)}{2^{2}}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Factor the expressions that are not already factored in \frac{16+8m\sqrt{2}+2m^{2}}{2^{2}}.
\frac{m^{2}+4\sqrt{2}m+8}{2}+\frac{\left(4-m\sqrt{2}\right)^{2}}{2^{2}}=m^{2}+\left(2\sqrt{2}\right)^{2}
Cancel out 2 in both numerator and denominator.
\frac{2\left(m^{2}+4\sqrt{2}m+8\right)}{4}+\frac{\left(4-m\sqrt{2}\right)^{2}}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2^{2} is 4. Multiply \frac{m^{2}+4\sqrt{2}m+8}{2} times \frac{2}{2}.
\frac{2\left(m^{2}+4\sqrt{2}m+8\right)+\left(4-m\sqrt{2}\right)^{2}}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
Since \frac{2\left(m^{2}+4\sqrt{2}m+8\right)}{4} and \frac{\left(4-m\sqrt{2}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{2m^{2}+8\sqrt{2}m+16+16-8m\sqrt{2}+2m^{2}}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
Do the multiplications in 2\left(m^{2}+4\sqrt{2}m+8\right)+\left(4-m\sqrt{2}\right)^{2}.
\frac{4m^{2}+32}{4}=m^{2}+\left(2\sqrt{2}\right)^{2}
Combine like terms in 2m^{2}+8\sqrt{2}m+16+16-8m\sqrt{2}+2m^{2}.
m^{2}+8=m^{2}+\left(2\sqrt{2}\right)^{2}
Divide each term of 4m^{2}+32 by 4 to get m^{2}+8.
m^{2}+8=m^{2}+2^{2}\left(\sqrt{2}\right)^{2}
Expand \left(2\sqrt{2}\right)^{2}.
m^{2}+8=m^{2}+4\left(\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
m^{2}+8=m^{2}+4\times 2
The square of \sqrt{2} is 2.
m^{2}+8=m^{2}+8
Multiply 4 and 2 to get 8.
m^{2}+8-m^{2}=8
Subtract m^{2} from both sides.
8=8
Combine m^{2} and -m^{2} to get 0.
\text{true}
Compare 8 and 8.
m\in \mathrm{R}
This is true for any m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}