Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2^{-4}a^{1}b^{3}}{\frac{1}{4}}\right)^{-4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{\frac{1}{16}a^{1}b^{3}}{\frac{1}{4}}\right)^{-4}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\left(\frac{\frac{1}{16}ab^{3}}{\frac{1}{4}}\right)^{-4}
Calculate a to the power of 1 and get a.
\left(\frac{1}{16}ab^{3}\times 4\right)^{-4}
Divide \frac{1}{16}ab^{3} by \frac{1}{4} by multiplying \frac{1}{16}ab^{3} by the reciprocal of \frac{1}{4}.
\left(\frac{1}{4}ab^{3}\right)^{-4}
Multiply \frac{1}{16} and 4 to get \frac{1}{4}.
\left(\frac{1}{4}\right)^{-4}a^{-4}\left(b^{3}\right)^{-4}
Expand \left(\frac{1}{4}ab^{3}\right)^{-4}.
\left(\frac{1}{4}\right)^{-4}a^{-4}b^{-12}
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
256a^{-4}b^{-12}
Calculate \frac{1}{4} to the power of -4 and get 256.
\left(\frac{2^{-4}a^{1}b^{3}}{\frac{1}{4}}\right)^{-4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{\frac{1}{16}a^{1}b^{3}}{\frac{1}{4}}\right)^{-4}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\left(\frac{\frac{1}{16}ab^{3}}{\frac{1}{4}}\right)^{-4}
Calculate a to the power of 1 and get a.
\left(\frac{1}{16}ab^{3}\times 4\right)^{-4}
Divide \frac{1}{16}ab^{3} by \frac{1}{4} by multiplying \frac{1}{16}ab^{3} by the reciprocal of \frac{1}{4}.
\left(\frac{1}{4}ab^{3}\right)^{-4}
Multiply \frac{1}{16} and 4 to get \frac{1}{4}.
\left(\frac{1}{4}\right)^{-4}a^{-4}\left(b^{3}\right)^{-4}
Expand \left(\frac{1}{4}ab^{3}\right)^{-4}.
\left(\frac{1}{4}\right)^{-4}a^{-4}b^{-12}
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
256a^{-4}b^{-12}
Calculate \frac{1}{4} to the power of -4 and get 256.