Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\left(2^{4}\times \frac{\left(4^{2}\right)^{-3}}{2^{-9}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -7 from -3 to get 4.
\left(2^{4}\times \frac{4^{-6}}{2^{-9}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\left(16\times \frac{4^{-6}}{2^{-9}}\right)^{2}
Calculate 2 to the power of 4 and get 16.
\left(16\times \frac{\frac{1}{4096}}{2^{-9}}\right)^{2}
Calculate 4 to the power of -6 and get \frac{1}{4096}.
\left(16\times \frac{\frac{1}{4096}}{\frac{1}{512}}\right)^{2}
Calculate 2 to the power of -9 and get \frac{1}{512}.
\left(16\times \frac{1}{4096}\times 512\right)^{2}
Divide \frac{1}{4096} by \frac{1}{512} by multiplying \frac{1}{4096} by the reciprocal of \frac{1}{512}.
\left(16\times \frac{1}{8}\right)^{2}
Multiply \frac{1}{4096} and 512 to get \frac{1}{8}.
2^{2}
Multiply 16 and \frac{1}{8} to get 2.
4
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}