Solve for y
y=\frac{2\sqrt{1001}i}{13}+3\approx 3+4.867474468i
y=-\frac{2\sqrt{1001}i}{13}+3\approx 3-4.867474468i
Share
Copied to clipboard
2\left(\left(\frac{19-3y}{2}\right)^{2}+y^{2}-10\times \frac{14-3y}{2}\right)-12y+172=0
Multiply both sides of the equation by 2.
2\left(\frac{\left(19-3y\right)^{2}}{2^{2}}+y^{2}-10\times \frac{14-3y}{2}\right)-12y+172=0
To raise \frac{19-3y}{2} to a power, raise both numerator and denominator to the power and then divide.
2\left(\frac{\left(19-3y\right)^{2}}{2^{2}}+\frac{y^{2}\times 2^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(19-3y\right)^{2}+y^{2}\times 2^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
Since \frac{\left(19-3y\right)^{2}}{2^{2}} and \frac{y^{2}\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\left(\frac{361-114y+9y^{2}+4y^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
Do the multiplications in \left(19-3y\right)^{2}+y^{2}\times 2^{2}.
2\left(\frac{361-114y+13y^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
Combine like terms in 361-114y+9y^{2}+4y^{2}.
2\left(\frac{361-114y+13y^{2}}{2^{2}}-5\left(14-3y\right)\right)-12y+172=0
Cancel out 2, the greatest common factor in 10 and 2.
2\left(\frac{361-114y+13y^{2}}{2^{2}}-70+15y\right)-12y+172=0
Use the distributive property to multiply -5 by 14-3y.
2\left(\frac{361-114y+13y^{2}}{2^{2}}+\frac{\left(-70+15y\right)\times 2^{2}}{2^{2}}\right)-12y+172=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -70+15y times \frac{2^{2}}{2^{2}}.
2\times \frac{361-114y+13y^{2}+\left(-70+15y\right)\times 2^{2}}{2^{2}}-12y+172=0
Since \frac{361-114y+13y^{2}}{2^{2}} and \frac{\left(-70+15y\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{361-114y+13y^{2}-280+60y}{2^{2}}-12y+172=0
Do the multiplications in 361-114y+13y^{2}+\left(-70+15y\right)\times 2^{2}.
2\times \frac{81-54y+13y^{2}}{2^{2}}-12y+172=0
Combine like terms in 361-114y+13y^{2}-280+60y.
\frac{2\left(81-54y+13y^{2}\right)}{2^{2}}-12y+172=0
Express 2\times \frac{81-54y+13y^{2}}{2^{2}} as a single fraction.
\frac{13y^{2}-54y+81}{2}-12y+172=0
Cancel out 2 in both numerator and denominator.
\frac{13}{2}y^{2}-27y+\frac{81}{2}-12y+172=0
Divide each term of 13y^{2}-54y+81 by 2 to get \frac{13}{2}y^{2}-27y+\frac{81}{2}.
\frac{13}{2}y^{2}-39y+\frac{81}{2}+172=0
Combine -27y and -12y to get -39y.
\frac{13}{2}y^{2}-39y+\frac{425}{2}=0
Add \frac{81}{2} and 172 to get \frac{425}{2}.
y=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times \frac{13}{2}\times \frac{425}{2}}}{2\times \frac{13}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{2} for a, -39 for b, and \frac{425}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-39\right)±\sqrt{1521-4\times \frac{13}{2}\times \frac{425}{2}}}{2\times \frac{13}{2}}
Square -39.
y=\frac{-\left(-39\right)±\sqrt{1521-26\times \frac{425}{2}}}{2\times \frac{13}{2}}
Multiply -4 times \frac{13}{2}.
y=\frac{-\left(-39\right)±\sqrt{1521-5525}}{2\times \frac{13}{2}}
Multiply -26 times \frac{425}{2}.
y=\frac{-\left(-39\right)±\sqrt{-4004}}{2\times \frac{13}{2}}
Add 1521 to -5525.
y=\frac{-\left(-39\right)±2\sqrt{1001}i}{2\times \frac{13}{2}}
Take the square root of -4004.
y=\frac{39±2\sqrt{1001}i}{2\times \frac{13}{2}}
The opposite of -39 is 39.
y=\frac{39±2\sqrt{1001}i}{13}
Multiply 2 times \frac{13}{2}.
y=\frac{39+2\sqrt{1001}i}{13}
Now solve the equation y=\frac{39±2\sqrt{1001}i}{13} when ± is plus. Add 39 to 2i\sqrt{1001}.
y=\frac{2\sqrt{1001}i}{13}+3
Divide 39+2i\sqrt{1001} by 13.
y=\frac{-2\sqrt{1001}i+39}{13}
Now solve the equation y=\frac{39±2\sqrt{1001}i}{13} when ± is minus. Subtract 2i\sqrt{1001} from 39.
y=-\frac{2\sqrt{1001}i}{13}+3
Divide 39-2i\sqrt{1001} by 13.
y=\frac{2\sqrt{1001}i}{13}+3 y=-\frac{2\sqrt{1001}i}{13}+3
The equation is now solved.
2\left(\left(\frac{19-3y}{2}\right)^{2}+y^{2}-10\times \frac{14-3y}{2}\right)-12y+172=0
Multiply both sides of the equation by 2.
2\left(\frac{\left(19-3y\right)^{2}}{2^{2}}+y^{2}-10\times \frac{14-3y}{2}\right)-12y+172=0
To raise \frac{19-3y}{2} to a power, raise both numerator and denominator to the power and then divide.
2\left(\frac{\left(19-3y\right)^{2}}{2^{2}}+\frac{y^{2}\times 2^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(19-3y\right)^{2}+y^{2}\times 2^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
Since \frac{\left(19-3y\right)^{2}}{2^{2}} and \frac{y^{2}\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\left(\frac{361-114y+9y^{2}+4y^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
Do the multiplications in \left(19-3y\right)^{2}+y^{2}\times 2^{2}.
2\left(\frac{361-114y+13y^{2}}{2^{2}}-10\times \frac{14-3y}{2}\right)-12y+172=0
Combine like terms in 361-114y+9y^{2}+4y^{2}.
2\left(\frac{361-114y+13y^{2}}{2^{2}}-5\left(14-3y\right)\right)-12y+172=0
Cancel out 2, the greatest common factor in 10 and 2.
2\left(\frac{361-114y+13y^{2}}{2^{2}}-70+15y\right)-12y+172=0
Use the distributive property to multiply -5 by 14-3y.
2\left(\frac{361-114y+13y^{2}}{2^{2}}+\frac{\left(-70+15y\right)\times 2^{2}}{2^{2}}\right)-12y+172=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -70+15y times \frac{2^{2}}{2^{2}}.
2\times \frac{361-114y+13y^{2}+\left(-70+15y\right)\times 2^{2}}{2^{2}}-12y+172=0
Since \frac{361-114y+13y^{2}}{2^{2}} and \frac{\left(-70+15y\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{361-114y+13y^{2}-280+60y}{2^{2}}-12y+172=0
Do the multiplications in 361-114y+13y^{2}+\left(-70+15y\right)\times 2^{2}.
2\times \frac{81-54y+13y^{2}}{2^{2}}-12y+172=0
Combine like terms in 361-114y+13y^{2}-280+60y.
\frac{2\left(81-54y+13y^{2}\right)}{2^{2}}-12y+172=0
Express 2\times \frac{81-54y+13y^{2}}{2^{2}} as a single fraction.
\frac{13y^{2}-54y+81}{2}-12y+172=0
Cancel out 2 in both numerator and denominator.
\frac{13}{2}y^{2}-27y+\frac{81}{2}-12y+172=0
Divide each term of 13y^{2}-54y+81 by 2 to get \frac{13}{2}y^{2}-27y+\frac{81}{2}.
\frac{13}{2}y^{2}-39y+\frac{81}{2}+172=0
Combine -27y and -12y to get -39y.
\frac{13}{2}y^{2}-39y+\frac{425}{2}=0
Add \frac{81}{2} and 172 to get \frac{425}{2}.
\frac{13}{2}y^{2}-39y=-\frac{425}{2}
Subtract \frac{425}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{13}{2}y^{2}-39y}{\frac{13}{2}}=-\frac{\frac{425}{2}}{\frac{13}{2}}
Divide both sides of the equation by \frac{13}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{39}{\frac{13}{2}}\right)y=-\frac{\frac{425}{2}}{\frac{13}{2}}
Dividing by \frac{13}{2} undoes the multiplication by \frac{13}{2}.
y^{2}-6y=-\frac{\frac{425}{2}}{\frac{13}{2}}
Divide -39 by \frac{13}{2} by multiplying -39 by the reciprocal of \frac{13}{2}.
y^{2}-6y=-\frac{425}{13}
Divide -\frac{425}{2} by \frac{13}{2} by multiplying -\frac{425}{2} by the reciprocal of \frac{13}{2}.
y^{2}-6y+\left(-3\right)^{2}=-\frac{425}{13}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-6y+9=-\frac{425}{13}+9
Square -3.
y^{2}-6y+9=-\frac{308}{13}
Add -\frac{425}{13} to 9.
\left(y-3\right)^{2}=-\frac{308}{13}
Factor y^{2}-6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-3\right)^{2}}=\sqrt{-\frac{308}{13}}
Take the square root of both sides of the equation.
y-3=\frac{2\sqrt{1001}i}{13} y-3=-\frac{2\sqrt{1001}i}{13}
Simplify.
y=\frac{2\sqrt{1001}i}{13}+3 y=-\frac{2\sqrt{1001}i}{13}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}