Solve for x
x=2.46
Graph
Share
Copied to clipboard
\frac{17}{3}-4.3=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{17}{3}-\frac{43}{10}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Convert decimal number 4.3 to fraction \frac{43}{10}.
\frac{170}{30}-\frac{129}{30}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Least common multiple of 3 and 10 is 30. Convert \frac{17}{3} and \frac{43}{10} to fractions with denominator 30.
\frac{170-129}{30}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Since \frac{170}{30} and \frac{129}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{30}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Subtract 129 from 170 to get 41.
\frac{41}{30}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{4}{5}-\frac{\frac{4}{9}}{2}\right)
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{41}{30}=\frac{5}{7}x\left(1-\frac{\frac{4}{9}}{2}\right)
Cancel out \frac{5}{4} and its reciprocal \frac{4}{5}.
\frac{41}{30}=\frac{5}{7}x\left(1-\frac{4}{9\times 2}\right)
Express \frac{\frac{4}{9}}{2} as a single fraction.
\frac{41}{30}=\frac{5}{7}x\left(1-\frac{4}{18}\right)
Multiply 9 and 2 to get 18.
\frac{41}{30}=\frac{5}{7}x\left(1-\frac{2}{9}\right)
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
\frac{41}{30}=\frac{5}{7}x\left(\frac{9}{9}-\frac{2}{9}\right)
Convert 1 to fraction \frac{9}{9}.
\frac{41}{30}=\frac{5}{7}x\times \frac{9-2}{9}
Since \frac{9}{9} and \frac{2}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{30}=\frac{5}{7}x\times \frac{7}{9}
Subtract 2 from 9 to get 7.
\frac{41}{30}=\frac{5\times 7}{7\times 9}x
Multiply \frac{5}{7} times \frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{41}{30}=\frac{5}{9}x
Cancel out 7 in both numerator and denominator.
\frac{5}{9}x=\frac{41}{30}
Swap sides so that all variable terms are on the left hand side.
x=\frac{41}{30}\times \frac{9}{5}
Multiply both sides by \frac{9}{5}, the reciprocal of \frac{5}{9}.
x=\frac{41\times 9}{30\times 5}
Multiply \frac{41}{30} times \frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{369}{150}
Do the multiplications in the fraction \frac{41\times 9}{30\times 5}.
x=\frac{123}{50}
Reduce the fraction \frac{369}{150} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}